(2/3)x-1=58

Simple and best practice solution for (2/3)x-1=58 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x-1=58 equation:



(2/3)x-1=58
We move all terms to the left:
(2/3)x-1-(58)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-1-58=0
We add all the numbers together, and all the variables
(+2/3)x-59=0
We multiply parentheses
2x^2-59=0
a = 2; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·2·(-59)
Δ = 472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{472}=\sqrt{4*118}=\sqrt{4}*\sqrt{118}=2\sqrt{118}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{118}}{2*2}=\frac{0-2\sqrt{118}}{4} =-\frac{2\sqrt{118}}{4} =-\frac{\sqrt{118}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{118}}{2*2}=\frac{0+2\sqrt{118}}{4} =\frac{2\sqrt{118}}{4} =\frac{\sqrt{118}}{2} $

See similar equations:

| f+3/3=-2 | | √7x+2=12 | | 10+|7x|=6 | | Π(x)=-1600+100x–x2 | | 4(4x-4)=5(3x+3) | | 17+10c=7 | | 121=1+(x-1)*2 | | 2x+5=25-2x | | s/2-18=-16 | | 3/2x-1=58 | | (3x-8)2=49 | | b/2+16=18 | | s+5/2s+20=62 | | 9f-4=-13 | | 4x^2-81x+5=0 | | 1+2=11-x | | 0.2=-4x | | 2x+1=5x-30 | | 4b+6=2-b-4 | | 12+7g=-16 | | -5(3x-19)=2(x-24)-27 | | 435.7=7x-5.3 | | q/6+11=12 | | 3x-1/4-2+1/5=7x-13/20 | | 3(x+7=2(3x+18) | | 12n+10=50n=3 | | 12x+5x+2=48 | | 4d-4=5d+-8 | | z/2+1=-1 | | 1161.7=83x+423 | | 2x^2+4x−2.5=0 | | 4^m=1 |

Equations solver categories