(2/3)x=3.333

Simple and best practice solution for (2/3)x=3.333 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x=3.333 equation:



(2/3)x=3.333
We move all terms to the left:
(2/3)x-(3.333)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-(3.333)=0
We add all the numbers together, and all the variables
(+2/3)x-3.333=0
We multiply parentheses
2x^2-3.333=0
a = 2; b = 0; c = -3.333;
Δ = b2-4ac
Δ = 02-4·2·(-3.333)
Δ = 26.664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{26.664}}{2*2}=\frac{0-\sqrt{26.664}}{4} =-\frac{\sqrt{}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{26.664}}{2*2}=\frac{0+\sqrt{26.664}}{4} =\frac{\sqrt{}}{4} $

See similar equations:

| -7x=-2x+10 | | 166=2x-50 | | 12n+3=46 | | x+90=126 | | 2(z+3)+z=-9 | | 2a+3a=150 | | (3x-34)=5x | | x-12-5=139 | | 0=-2(x)^3+9x^2+9x+11 | | 18-2g=-7/9 | | 9x+15=95 | | 3÷q=-3 | | 3x+-4=-2 | | 5m-1-5m=-1 | | -13=7y=64 | | (6a-7)^3=0 | | (3x-34)+5x=180 | | (3x-34)+5x=180+5x | | 7x-21=-48 | | $14.50-p=($53 | | (3x+34)+5x=180 | | 17x-16=5x+6 | | 8t-3t-3=12 | | $14.50-p=$53 | | 5(x-3)+2(5-x)=-2 | | +15=2×x-3 | | (3x+34)+5x=180+5x | | x+16+4x=-3x-11-29 | | 4-7x=12-3*x | | 3x+5x=180+34 | | -21=7/3u | | 1/4(n-6)=1/4n-1/2 |

Equations solver categories