(2/3)y-(1/6)y+4=19

Simple and best practice solution for (2/3)y-(1/6)y+4=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)y-(1/6)y+4=19 equation:



(2/3)y-(1/6)y+4=19
We move all terms to the left:
(2/3)y-(1/6)y+4-(19)=0
Domain of the equation: 3)y!=0
y!=0/1
y!=0
y∈R
Domain of the equation: 6)y!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
(+2/3)y-(+1/6)y+4-19=0
We add all the numbers together, and all the variables
(+2/3)y-(+1/6)y-15=0
We multiply parentheses
2y^2-y^2-15=0
We add all the numbers together, and all the variables
y^2-15=0
a = 1; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·1·(-15)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*1}=\frac{0-2\sqrt{15}}{2} =-\frac{2\sqrt{15}}{2} =-\sqrt{15} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*1}=\frac{0+2\sqrt{15}}{2} =\frac{2\sqrt{15}}{2} =\sqrt{15} $

See similar equations:

| 11y+10=65 | | 5y×1+3y=-15 | | -21x^2-16x+16=0 | | 35=(7/8)b | | 10x+6=2x-4 | | 5y×1+3y=-+5 | | 15.122n=-9.0732 | | 8x-6=-4(x+6)+18 | | 18.1x=237.11 | | 2x-1=7x=44 | | 30-20x2x=10 | | 5-4f=10-2.5f | | -70b=-7 | | 4(x-5)+5=3x-6 | | -16.5n=77.55 | | 6(-6)+4=8x-8 | | 3x+15=x=21 | | 18m+18•4/9-16=118 | | 2m+4=m | | -36+x=124 | | 9x+5=7x+(-3) | | 6)y12=8 | | W=1/2(9w-18) | | 14.9x=-117.412 | | 10/3x=10x+1 | | F(1/2)=8+2x | | -2/3(7-w)=-16 | | -15.5=-8s+9s | | (3y^2)-y+8=0 | | 6x-2=(-26) | | m-20=-24.383 | | x-16.49=-11.4 |

Equations solver categories