(2/3x)+(1/x)=30

Simple and best practice solution for (2/3x)+(1/x)=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3x)+(1/x)=30 equation:



(2/3x)+(1/x)=30
We move all terms to the left:
(2/3x)+(1/x)-(30)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3x)+(+1/x)-30=0
We get rid of parentheses
2/3x+1/x-30=0
We calculate fractions
2x/3x^2+3x/3x^2-30=0
We multiply all the terms by the denominator
2x+3x-30*3x^2=0
We add all the numbers together, and all the variables
5x-30*3x^2=0
Wy multiply elements
-90x^2+5x=0
a = -90; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-90)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-90}=\frac{-10}{-180} =1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-90}=\frac{0}{-180} =0 $

See similar equations:

| 77/12=39/12+k | | 6-(3y-8)=9-4y | | 61/3+2/3=x | | N2+2n=3 | | 2x-3=-7-3 | | 15+j=9 | | 65/12=31/4+k | | v=(1/3)*3.14(5)^2*9 | | x=-2*3x+70 | | v=3.14(8)^2*15 | | 3h(h+2)=0 | | v=(1/3)*3.14(8)^2*15 | | 2.5x-1=10=7.5x | | 7t-3+4t=-2 | | (3x-22)^2=0 | | 20=(-1.5r+0.75 | | 1/9x+5=11 | | -(c-4)=13 | | 8(11^(7k))-3=213 | | -16t^2+80t+2=0 | | 1/3x-3=30 | | (8*11^7k)-3=213 | | .11=(x-86)/x | | -68+30k=10(3k-7)+7 | | 0.3x-0.5=2.8 | | -13=-11+x | | 12.95+0.25=21.20m | | 12.95m+0.25=21.20 | | 2(−4x+3)+3x+3=16 | | 2x-8=-23 | | 4x/3=108/x | | N+6=8x4 |

Equations solver categories