(2/3x)+24=2x

Simple and best practice solution for (2/3x)+24=2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3x)+24=2x equation:



(2/3x)+24=2x
We move all terms to the left:
(2/3x)+24-(2x)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3x)-2x+24=0
We add all the numbers together, and all the variables
-2x+(+2/3x)+24=0
We get rid of parentheses
-2x+2/3x+24=0
We multiply all the terms by the denominator
-2x*3x+24*3x+2=0
Wy multiply elements
-6x^2+72x+2=0
a = -6; b = 72; c = +2;
Δ = b2-4ac
Δ = 722-4·(-6)·2
Δ = 5232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5232}=\sqrt{16*327}=\sqrt{16}*\sqrt{327}=4\sqrt{327}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-4\sqrt{327}}{2*-6}=\frac{-72-4\sqrt{327}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+4\sqrt{327}}{2*-6}=\frac{-72+4\sqrt{327}}{-12} $

See similar equations:

| 92-x=44 | | (0,75x)+24=2x | | 3c+5=7c+4 | | 3(-6x+5)=-32x-20 | | 11+9v=74 | | 3z/7+5=7 | | 2x14-8=12 | | 8^x=262144 | | 18-(-2x)=-6 | | g/4+13=16 | | 1/2(x+10=6 | | 5(4y+2)=2(10y+5) | | -6(x-6)=3(x+9) | | 14+23m=35+16m | | 3x2-2x-21=0 | | 3(5+a)=1/4(28+12a) | | 72/55=8/w | | 3(-13x)=2(-4x+7) | | y^2=-13y-40 | | 4(2x–3)=28 | | 10=d/4+8 | | x/9+5=-7 | | 4(n-5)=1/3n+2 | | 7+7x=5x-11 | | 4(g–14)–16=-4 | | 10x+6-4x=x+1 | | 6(2m-1)+4=-26 | | 6(x+)=-3(x-43) | | 3g+3(-8+3g=1-g | | x^2-121=0. | | F(x)=0.5x^2-4x+6 | | -5(x+2)=3(x+2)-20 |

Equations solver categories