(2/5)b+6=10

Simple and best practice solution for (2/5)b+6=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)b+6=10 equation:



(2/5)b+6=10
We move all terms to the left:
(2/5)b+6-(10)=0
Domain of the equation: 5)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+2/5)b+6-10=0
We add all the numbers together, and all the variables
(+2/5)b-4=0
We multiply parentheses
2b^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $

See similar equations:

| -9(v+2)=2v+48 | | -16=-3n-5n | | -7(4+m)=31+4m | | 3y=4y+8 | | -16n=-3n-5n | | m+150=1770 | | 2-5x+3x=2 | | -7u+49=3(u-7) | | v+3+v=-13 | | 13/7n=13/4 | | (4x-3)+(2x+1)=88 | | 2-5x+3=2 | | -6(a-3)=15 | | |4n-1|=6 | | 34+6m=6(m+5) | | 9x-24=6x+6 | | 2+4r=-14 | | 7(u+2)=5u+18 | | 28=y/4-12 | | -m-33=3(5m-1)+2 | | 5/7(14d+63)=10d+19 | | 19=13x=32 | | 4=4x-28+20 | | 62d+20d=400+20d | | 4.9x^2+14x-36=0 | | 2k+2=20 | | 6v+3(5v-4)=(2v+5) | | 3(5x+7)-3x-9=12x+12 | | -8x+20=36 | | -m-33=3(5m-)+2 | | 4x+4+4x+3+4x=4x+4x+5x+3 | | 1x+13.2=21.6 |

Equations solver categories