(2/5)q-3=9

Simple and best practice solution for (2/5)q-3=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)q-3=9 equation:



(2/5)q-3=9
We move all terms to the left:
(2/5)q-3-(9)=0
Domain of the equation: 5)q!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
(+2/5)q-3-9=0
We add all the numbers together, and all the variables
(+2/5)q-12=0
We multiply parentheses
2q^2-12=0
a = 2; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·2·(-12)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*2}=\frac{0-4\sqrt{6}}{4} =-\frac{4\sqrt{6}}{4} =-\sqrt{6} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*2}=\frac{0+4\sqrt{6}}{4} =\frac{4\sqrt{6}}{4} =\sqrt{6} $

See similar equations:

| -y/3+6=8 | | 5(2x/5)=42x5 | | -3+13w=-42 | | -5(x-3)^2=-10 | | k/7-9=-5 | | 6a+12=a+27 | | -2x^2+1=-17 | | 3(2x-7)^2+1=28 | | -x+15=90 | | -48x^2+10=0 | | 2(39–Y)+4y=110 | | m+54=8 | | 78-6y=110 | | 2×-5=3x-15 | | -6(1-m)=-2m | | -7y+21=35 | | 2x+5*5=7 | | t-1=-15(-8) | | 4^3x+1=10 | | 6x÷4x=10 | | 6t÷4t=10 | | -2x^2+4=86 | | 9x^2-108=0 | | 8x−3(2x−4)=3(x−6) | | -2x^2+4=-86 | | 7(4x-3)-4(3x+8)+25=3(4x+9)-43 | | 12x^2+29x=30+2x^2+9x | | 9+4x^2=57 | | .0005x=100000 | | 7z/12=6z/8 | | Z=5-9i | | 3y=-1+10 |

Equations solver categories