(2/5)t-1=5

Simple and best practice solution for (2/5)t-1=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)t-1=5 equation:



(2/5)t-1=5
We move all terms to the left:
(2/5)t-1-(5)=0
Domain of the equation: 5)t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+2/5)t-1-5=0
We add all the numbers together, and all the variables
(+2/5)t-6=0
We multiply parentheses
2t^2-6=0
a = 2; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·2·(-6)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*2}=\frac{0-4\sqrt{3}}{4} =-\frac{4\sqrt{3}}{4} =-\sqrt{3} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*2}=\frac{0+4\sqrt{3}}{4} =\frac{4\sqrt{3}}{4} =\sqrt{3} $

See similar equations:

| -54=-3x+4(x-16) | | 4(8c-10)+12=-2(3c-10)+13c+2 | | 8w+5(w+6)=-9 | | 0.5x+25=27 | | A=4/3(h-77) | | 4y-y+(-7)=2 | | 4v+8(v-7)=4 | | 1.3+x/3=-6.2 | | 2x+133=-6x-195 | | 2^x+3^(1+2x)=50 | | 4(2x-1)=3+7x | | 4=92/y | | 3(8-u)-5u=28 | | 6.8x-3=85.4 | | -9w+33=-6(w-7) | | 8c=2c+54 | | 6x-15 = 27 | | -x+121=167 | | 4^t=68 | | -6x-15=-87 | | T=9x+5x | | 9^x+3^1+2x=50 | | 258=41-u | | 3(x+10)=57 | | 16+2x=-34+4x | | 9x-6=4x+3 | | -11x+17=-71 | | -y+198=28 | | (2a+3)^2=-9 | | 2x+3*0=5x−0 | | 2p+7=p-5 | | z/8+7=-5 |

Equations solver categories