(2/5)x+(1/5)x=360

Simple and best practice solution for (2/5)x+(1/5)x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)x+(1/5)x=360 equation:



(2/5)x+(1/5)x=360
We move all terms to the left:
(2/5)x+(1/5)x-(360)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5)x+(+1/5)x-360=0
We multiply parentheses
2x^2+x^2-360=0
We add all the numbers together, and all the variables
3x^2-360=0
a = 3; b = 0; c = -360;
Δ = b2-4ac
Δ = 02-4·3·(-360)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{30}}{2*3}=\frac{0-12\sqrt{30}}{6} =-\frac{12\sqrt{30}}{6} =-2\sqrt{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{30}}{2*3}=\frac{0+12\sqrt{30}}{6} =\frac{12\sqrt{30}}{6} =2\sqrt{30} $

See similar equations:

| h+5/23=16 | | 16.2u+3.5=15.2u | | 10c=10c | | 15z+19=17z+1 | | 5/6-a=1/3 | | 9s-88=s+72 | | 5`2x+1-26(5x)+5=0 | | 7+x=0x | | 4-19k=-2k+19-18k | | 2p-35=3p-64 | | 8/9-a=1/3 | | -17u=12-19u | | 0.25=y÷8 | | 12.16-3.7s=-3.29-14s | | b+0.2-10=4.4 | | x/7+3-2x=-3 | | 6x+7=137x | | -9w-7=20-18w | | 16x+18=5x-24 | | -5+13t=12t | | 5x-26(5x)+25=0 | | x/6+15=3 | | 80=2×x+20 | | -2y+16-y=-2y-2 | | -4+2w=-w-10 | | 17=-y+20 | | Xx12=180 | | (1/3)^2x+3=9X-5 | | -5n+8-n=20 | | 27.3-4y=2.5y | | 3x²-4x=2 | | 80=4.x+20 |

Equations solver categories