(2/5)x+3/7=12

Simple and best practice solution for (2/5)x+3/7=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)x+3/7=12 equation:



(2/5)x+3/7=12
We move all terms to the left:
(2/5)x+3/7-(12)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (2/5)x-12+3/7=0
We add all the numbers together, and all the variables
(+2/5)x-12+3/7=0
We multiply parentheses
2x^2-12+3/7=0
We multiply all the terms by the denominator
2x^2*7+3-12*7=0
We add all the numbers together, and all the variables
2x^2*7-81=0
Wy multiply elements
14x^2-81=0
a = 14; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·14·(-81)
Δ = 4536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4536}=\sqrt{324*14}=\sqrt{324}*\sqrt{14}=18\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{14}}{2*14}=\frac{0-18\sqrt{14}}{28} =-\frac{18\sqrt{14}}{28} =-\frac{9\sqrt{14}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{14}}{2*14}=\frac{0+18\sqrt{14}}{28} =\frac{18\sqrt{14}}{28} =\frac{9\sqrt{14}}{14} $

See similar equations:

| -4(w-3)+5w=-2(6-2w) | | x4+7=12 | | 9.15d+12=5+0.20d | | (x)/(-5)+3=-13 | | 8+7n=5n+4 | | 1/2x-2x+5=-20 | | 10-3h=1 | | -5x+6=x-66 | | 24=-5+x | | 12-3j=6 | | 8.50×(x×3.50)=26 | | 0=16x+29 | | $25.00-k=$18.70 | | 81=32+7x | | y/12=107 | | 60=5+(-m/7) | | 2/3m-1/3=7/30 | | 23/6b+2/3-6/5=4357/240 | | 50x=98 | | 34-3x=14x-17 | | 15y+26=101 | | C=5/9x(8-32) | | 3x-32=2x-10 | | b+13=53 | | x/5+7=22 | | 57p+23=42p-97 | | 62=w+17 | | 13=x/3-8 | | (6x-4)°=(7x+16)° | | 76+p=107 | | 4v-10=-54 | | x(12+3)=60 |

Equations solver categories