(2/5)x=8/125

Simple and best practice solution for (2/5)x=8/125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)x=8/125 equation:



(2/5)x=8/125
We move all terms to the left:
(2/5)x-(8/125)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5)x-(+8/125)=0
We multiply parentheses
2x^2-(+8/125)=0
We get rid of parentheses
2x^2-8/125=0
We multiply all the terms by the denominator
2x^2*125-8=0
Wy multiply elements
250x^2-8=0
a = 250; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·250·(-8)
Δ = 8000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8000}=\sqrt{1600*5}=\sqrt{1600}*\sqrt{5}=40\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{5}}{2*250}=\frac{0-40\sqrt{5}}{500} =-\frac{40\sqrt{5}}{500} =-\frac{2\sqrt{5}}{25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{5}}{2*250}=\frac{0+40\sqrt{5}}{500} =\frac{40\sqrt{5}}{500} =\frac{2\sqrt{5}}{25} $

See similar equations:

| 3(x-4)-7=-2x+10 | | 6y2+14y-69=0 | | 93=w+3 | | Y-7=-1/2(x-0) | | 5a+1=7a+4 | | 3x+5+61=180 | | (x^2)+5*x=1400 | | Y-8=-1/2(x-(-2) | | s-41=19 | | (1/3)x=1/81 | | 18x+1/2=6(3x=25) | | Y-8=-1/2(x-(-2)) | | 36=t-23 | | 4+m=44 | | X*x*6=94 | | -1x=25x | | 74=2p | | (-4)x=-64 | | 7x-5=23+4x | | 5=p/6 | | -3x(x+7)(4x-1)=0 | | -15=-2r-19 | | Y-4=6(x-7) | | 45x=50x | | 10=70/v | | 6(x+6)-12=60 | | Y-(-2)=-6(x-7) | | 74=g+44 | | -15=-2r-16 | | x²-2x+3=0 | | 10^-8+4x3=288 | | 95=5r |

Equations solver categories