(2/5)z+4=13

Simple and best practice solution for (2/5)z+4=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)z+4=13 equation:



(2/5)z+4=13
We move all terms to the left:
(2/5)z+4-(13)=0
Domain of the equation: 5)z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+2/5)z+4-13=0
We add all the numbers together, and all the variables
(+2/5)z-9=0
We multiply parentheses
2z^2-9=0
a = 2; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·2·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*2}=\frac{0-6\sqrt{2}}{4} =-\frac{6\sqrt{2}}{4} =-\frac{3\sqrt{2}}{2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*2}=\frac{0+6\sqrt{2}}{4} =\frac{6\sqrt{2}}{4} =\frac{3\sqrt{2}}{2} $

See similar equations:

| x2-7x-17=0 | | 3-5c=-37 | | 3b+3b-4=8 | | 5x+11+7x-9=360 | | 4(2y+1)=2y-26* | | -11=y/3-8 | | 6b-5=1 | | 2/5z+4=13 | | 2x-1/5x=1/6 | | 0=180-10x^2+30x | | y-3=11* | | 7x9=(7×10)-(7×■) | | -22=2(1+8x)+4(7x-6) | | 180=120+x | | t2+8=-10 | | 10/10x=x+4/x+18 | | -12+6n=7(n-2) | | y/8-3=9 | | 2.4^x=0.4^-x | | 3/4=n/28 | | 90=2x+15+(3x-15) | | 8z-1=-17 | | 8z–1=–17 | | 2/3(2x+1)=1/4(5x+5) | | 6n+2=2-n | | 10x4=36= | | (8x+20)^2=50 | | (8x+20^)2=50 | | (8x+20)2=50 | | (4a-12)=÷a | | X+8•5x=180 | | 4x(2x+5)+-11=4x+-3 |

Equations solver categories