(2/5x)-(1/3x)=3

Simple and best practice solution for (2/5x)-(1/3x)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5x)-(1/3x)=3 equation:



(2/5x)-(1/3x)=3
We move all terms to the left:
(2/5x)-(1/3x)-(3)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5x)-(+1/3x)-3=0
We get rid of parentheses
2/5x-1/3x-3=0
We calculate fractions
6x/15x^2+(-5x)/15x^2-3=0
We multiply all the terms by the denominator
6x+(-5x)-3*15x^2=0
Wy multiply elements
-45x^2+6x+(-5x)=0
We get rid of parentheses
-45x^2+6x-5x=0
We add all the numbers together, and all the variables
-45x^2+x=0
a = -45; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-45)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-45}=\frac{-2}{-90} =1/45 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-45}=\frac{0}{-90} =0 $

See similar equations:

| 5m²-23m-42=0 | | -8x+8-4x=-4 | | 75/24x=56/24 | | .05x+.1(-x+70)=5.9 | | 4(4x+3)=158 | | x=1.16-6.48x | | 6(2x+5)=246 | | (b÷3)+17=48 | | P(x)=-0.004x^2+2.8x-250 | | 30=6+70t-16t2 | | x*(x+x/2)=864 | | 9x+2=8x+(−6) | | 5c=2(11/10) | | -26.46x+20.064=-58.56 | | 8x^2-3+2x=0 | | -34.24x+24.064=–58.56 | | 8/9x=1/36 | | 1(x-0)=-5 | | x^2+x+2 | | x^2+x+2=15 | | x^2-6x-3 | | -2(2x-3)=3(x+1)=10 | | |7x+1|=18 | | 6r+9=8 | | 1(-1y+-9)=-4 | | 5^3x^2=41 | | 5^3x+^2=41 | | 2.5x-6.8)=12.9 | | 5x+5x=68 | | 1/56+1x=13/14 | | 30=u/2+13 | | 2x+1/56-1x=13/14 |

Equations solver categories