(2/7x)+(5/49x)=-19

Simple and best practice solution for (2/7x)+(5/49x)=-19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/7x)+(5/49x)=-19 equation:



(2/7x)+(5/49x)=-19
We move all terms to the left:
(2/7x)+(5/49x)-(-19)=0
Domain of the equation: 7x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 49x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/7x)+(+5/49x)-(-19)=0
We add all the numbers together, and all the variables
(+2/7x)+(+5/49x)+19=0
We get rid of parentheses
2/7x+5/49x+19=0
We calculate fractions
98x/343x^2+35x/343x^2+19=0
We multiply all the terms by the denominator
98x+35x+19*343x^2=0
We add all the numbers together, and all the variables
133x+19*343x^2=0
Wy multiply elements
6517x^2+133x=0
a = 6517; b = 133; c = 0;
Δ = b2-4ac
Δ = 1332-4·6517·0
Δ = 17689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17689}=133$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(133)-133}{2*6517}=\frac{-266}{13034} =-1/49 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(133)+133}{2*6517}=\frac{0}{13034} =0 $

See similar equations:

| 1/2x-15=12(1/2x-15)-10 | | 7x=3.666666666 | | 4w-3=11w-3 | | 3x-(x+)=2x+2 | | 12t+6+3t=;16 | | 4x^2+5x+2=60 | | 10y-6=16y+6 | | 9x-2=30 | | 1/5k=7 | | 7142.2-183.8x=5671.8 | | 4x^2+5x+2x=60 | | a/6+1/4=3/8 | | 4x^25x+2x=60 | | x/4-6=3-3 | | 12-2u=9+45 | | 18/5x=107/15 | | (-9/2x)+4=(-9/2) | | -11x+1=122 | | 3-5/2z=6 | | 8s-16s=56 | | 3(n^2+3)=11n-6+n^2 | | 7/3v+2=8 | | 5(4+x)=4(3x-1)-25 | | 17=20+3/4x | | 178=20+3/4x | | 14(n÷5);n=20 | | -3y-6=-18 | | 24=-6/5c | | (4)/(b)+7=2 | | 6x+16=6x | | 400-4x=36 | | 4x+32x+9=180 |

Equations solver categories