If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/9)x=24
We move all terms to the left:
(2/9)x-(24)=0
Domain of the equation: 9)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+2/9)x-24=0
We multiply parentheses
2x^2-24=0
a = 2; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·2·(-24)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*2}=\frac{0-8\sqrt{3}}{4} =-\frac{8\sqrt{3}}{4} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*2}=\frac{0+8\sqrt{3}}{4} =\frac{8\sqrt{3}}{4} =2\sqrt{3} $
| 4^x+2^x+1=15 | | 6-j=-3 | | 5b÷2=27.5 | | I5/13=t-6/13 | | 8=-1/5x+14 | | x+136+x+62=180 | | 65=-5h | | (2x^2+3x+5)+(x-7)(4x+3)=0 | | 2x+1=183 | | 6s+6=12 | | x-1/7=1/3 | | 2x+1=83 | | 3y-y+4=16 | | 15-12+5q=85 | | 2a^2=12^2 | | 22.75=x-0.30x | | 4/k=-2 | | (4m-3)/4=-(9+4m)/8 | | 2-z=-3 | | y=1/3•9-3 | | 25+.45d=40+.25d | | 12n-8n-3n+2=20 | | 8(3x-5)=4(2x+6) | | 3x+3(2)=-18 | | 2(d-3)=10 | | 3w-w+4=20 | | 5x3−2x2+3x−8=2x2+4+C | | 4.38=x-0.60x | | 5x÷14=x+(-2) | | -3x-1(3)=-24 | | 5t2–27t+10=0 | | 3b+-8=-23 |