(2/a)-(3/4a)=2

Simple and best practice solution for (2/a)-(3/4a)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/a)-(3/4a)=2 equation:



(2/a)-(3/4a)=2
We move all terms to the left:
(2/a)-(3/4a)-(2)=0
Domain of the equation: a)!=0
a!=0/1
a!=0
a∈R
Domain of the equation: 4a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
(+2/a)-(+3/4a)-2=0
We get rid of parentheses
2/a-3/4a-2=0
We calculate fractions
8a/4a^2+(-3a)/4a^2-2=0
We multiply all the terms by the denominator
8a+(-3a)-2*4a^2=0
Wy multiply elements
-8a^2+8a+(-3a)=0
We get rid of parentheses
-8a^2+8a-3a=0
We add all the numbers together, and all the variables
-8a^2+5a=0
a = -8; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-8)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-8}=\frac{-10}{-16} =5/8 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-8}=\frac{0}{-16} =0 $

See similar equations:

| 5-3(2x-6)-(2x-4)=27-6x | | x*(2x+6)^(1/2)=0 | | -2(2x+3)=-4(-+1)-2 | | (9c+27)+(10c+18)=180 | | 39+m=6 | | 13+(6-2x)=7+(7x+3) | | (10c+18)+(9c+27)=180 | | 15-2x=15-2x | | 15-2x=-2x-15 | | 3s=s+10 | | S+10=3s | | 2w-62=w | | 3a=6=2a | | (b+51)+(2b-22)=180 | | 3x+8+6x+12=110 | | X+(2x-3)=6 | | Y=1250+15x | | 8c+12=c+19 | | 105=5(4n+5) | | 3x+(2x-3)=6 | | 0=-0.04d^2+0.8d+1.6 | | 14a-10a-2a=4 | | (2w+38)+(3w+57)=180 | | 320=-20b | | 12h-7h-2h=9 | | 4x-88=3x-59 | | 10p-8p+p+3p=6 | | 3(x-5)=2(x-4€ | | 6s-26=s+14 | | 3c^2-c=1 | | 7x-x+x-7x+2x=18 | | (8p)+(p+54)=180 |

Equations solver categories