(2/x)+(x+30)=180

Simple and best practice solution for (2/x)+(x+30)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/x)+(x+30)=180 equation:



(2/x)+(x+30)=180
We move all terms to the left:
(2/x)+(x+30)-(180)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/x)+(x+30)-180=0
We get rid of parentheses
2/x+x+30-180=0
We multiply all the terms by the denominator
x*x+30*x-180*x+2=0
We add all the numbers together, and all the variables
-150x+x*x+2=0
Wy multiply elements
x^2-150x+2=0
a = 1; b = -150; c = +2;
Δ = b2-4ac
Δ = -1502-4·1·2
Δ = 22492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22492}=\sqrt{4*5623}=\sqrt{4}*\sqrt{5623}=2\sqrt{5623}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5623}}{2*1}=\frac{150-2\sqrt{5623}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5623}}{2*1}=\frac{150+2\sqrt{5623}}{2} $

See similar equations:

| 2c+4+3c=-26-5c | | 16d^2-24d+9=0 | | -9+24d-16d^2=0 | | 5(x+10)=2x+59 | | 6x+12+7x-32=90 | | 15x+1=14x+7 | | 2/x+x+30=180 | | 3x+20=4x+4 | | 2s-19=1 | | 17=2b-3 | | 15-2x=-3(2x-1) | | 3-3x=9+3x | | 2^(x)=16000 | | b.7=2 | | 13x+20=14x+11 | | g+17=3 | | 45x-2+3x=669 | | 3a-21=-2a+14 | | 4(18)=y | | 7x+7+5x+14=13x+10 | | 9(4x-5)=36x-45 | | 9(4x-5)=36x-445 | | 40p÷40=400 | | 8(a+2)+3=3(2a-7)-16 | | 14x^2+1400x-12600=0 | | x/6=7/14 | | 333x+999=1332 | | 1-2(2x-4)=2x-3-x+4 | | (3x+4)(5x+6)=0 | | 5(3x-2)=5+12 | | 5(3x-2)÷=5+12 | | 8i+15=2i+5 |

Equations solver categories