(20)(39)=(x+8)(2x-6)

Simple and best practice solution for (20)(39)=(x+8)(2x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (20)(39)=(x+8)(2x-6) equation:



(20)(39)=(x+8)(2x-6)
We move all terms to the left:
(20)(39)-((x+8)(2x-6))=0
We multiply parentheses ..
-((+2x^2-6x+16x-48))+2039=0
We calculate terms in parentheses: -((+2x^2-6x+16x-48)), so:
(+2x^2-6x+16x-48)
We get rid of parentheses
2x^2-6x+16x-48
We add all the numbers together, and all the variables
2x^2+10x-48
Back to the equation:
-(2x^2+10x-48)
We get rid of parentheses
-2x^2-10x+48+2039=0
We add all the numbers together, and all the variables
-2x^2-10x+2087=0
a = -2; b = -10; c = +2087;
Δ = b2-4ac
Δ = -102-4·(-2)·2087
Δ = 16796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16796}=\sqrt{4*4199}=\sqrt{4}*\sqrt{4199}=2\sqrt{4199}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{4199}}{2*-2}=\frac{10-2\sqrt{4199}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{4199}}{2*-2}=\frac{10+2\sqrt{4199}}{-4} $

See similar equations:

| 3^4x-1=156 | | -59+x=-35 | | (3x-8)/5-(x-1)/4+(7-x)/3=(4-X)/3-(8x-5)/10 | | x+-42=-53 | | 3x-5-2=27 | | (6x-8)=(5x+10) | | -99+x=-149 | | 0.03^x=2.4 | | (3x-1)(3)=4(x+5) | | 24000=24000-300t | | 20=x2x-4 | | 3x-10=50° | | 15=8u-6u | | 15+0.5x=3x | | (3x+9)=(x+9) | | 3g+2(g+2)=2+2*2+2-2g | | 9h-21-21=24 | | -7=w/2-3 | | 4x(7)=10 | | x^-35x+196=0 | | 8x+3+4x+3+90=180 | | P(x)=4x^-1 | | 30/4=100/x | | 192=-y+129 | | 8/11x1/11=-4/11 | | 6.4a-2.9=1.4a=12.1 | | 272=29-v | | 312=(1/8)*x+(1/2)*x | | (2-w)(2w+3)=0 | | -(5/4)x+(2/5)=-(13/30) | | -7+5x=11-x | | 8x-6=57-x |

Equations solver categories