(20+2x)(15+2x)-20*15=456

Simple and best practice solution for (20+2x)(15+2x)-20*15=456 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (20+2x)(15+2x)-20*15=456 equation:



(20+2x)(15+2x)-20*15=456
We move all terms to the left:
(20+2x)(15+2x)-20*15-(456)=0
determiningTheFunctionDomain (20+2x)(15+2x)-456-20*15=0
We add all the numbers together, and all the variables
(2x+20)(2x+15)-456-20*15=0
We add all the numbers together, and all the variables
(2x+20)(2x+15)-756=0
We multiply parentheses ..
(+4x^2+30x+40x+300)-756=0
We get rid of parentheses
4x^2+30x+40x+300-756=0
We add all the numbers together, and all the variables
4x^2+70x-456=0
a = 4; b = 70; c = -456;
Δ = b2-4ac
Δ = 702-4·4·(-456)
Δ = 12196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12196}=\sqrt{4*3049}=\sqrt{4}*\sqrt{3049}=2\sqrt{3049}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-2\sqrt{3049}}{2*4}=\frac{-70-2\sqrt{3049}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+2\sqrt{3049}}{2*4}=\frac{-70+2\sqrt{3049}}{8} $

See similar equations:

| (20+2x)(15+2x)-20x15=414 | | -7/6x=42 | | 4v+7=—13 | | -2(t-4)=7t-1 | | 5x-8=12-8x+4 | | 3-x-1+2=13/x-1 | | 4/x+3=3/2x+19/6 | | -12+3x-7x=-43 | | x/4+5=18 | | x3-x2-13x+4=0 | | 17y+26=145 | | 108=-9d+9 | | 25d-85-15d=15 | | -5(-5d+17)-15d=15 | | 5x+4/2=x-1 | |  2(x-4)+2x=-6x-2  | | 44x=20x-120000 | | 5y−2=43 | | X^-0,78+34,13*x^-1=55*10^-5 | | 5/x=x+2/3 | | 13x/12=13/6 | | 2^k=6k+2 | | X^-0.78+34.13*x^-1=55*10^-5 | | x-5°+3x+20°+60°=180° | | 5x-3=4x+2-6 | | 3(b-1)=4b+10= | | 2(6x+6)-5=7+16x-4x | | 5p+6=4 | | 9x-(6x-7)=34 | | 3√x=3 | | 3^(x+1)-3^x+3^(x-1)=63 | | x2+16x=420 |

Equations solver categories