(20+2x)(50+2x)=456

Simple and best practice solution for (20+2x)(50+2x)=456 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (20+2x)(50+2x)=456 equation:



(20+2x)(50+2x)=456
We move all terms to the left:
(20+2x)(50+2x)-(456)=0
We add all the numbers together, and all the variables
(2x+20)(2x+50)-456=0
We multiply parentheses ..
(+4x^2+100x+40x+1000)-456=0
We get rid of parentheses
4x^2+100x+40x+1000-456=0
We add all the numbers together, and all the variables
4x^2+140x+544=0
a = 4; b = 140; c = +544;
Δ = b2-4ac
Δ = 1402-4·4·544
Δ = 10896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10896}=\sqrt{16*681}=\sqrt{16}*\sqrt{681}=4\sqrt{681}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-4\sqrt{681}}{2*4}=\frac{-140-4\sqrt{681}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+4\sqrt{681}}{2*4}=\frac{-140+4\sqrt{681}}{8} $

See similar equations:

| 4(x-3)-3x=-7 | | 2(4w-9)=24 | | 12b-7b=18+42 | | 6v+8=-8-10v | | 2x+11=13x-88 | | 3v-14=4 | | 0.25+x=0.5x-2.25 | | 3x2+10x=-10 | | 7x+2+38=180 | | 8(1+5x)+x=13=13+5x | | 3+6b=-9+2b | | 2(w+4)=-2w+36 | | 1/2m20-4=5 | | 2/4x=5/9+1 | | 4z-z=-21+9 | | 10p-3=212+4p-7 | | 55,000=10,000(1.02)^6x | | 4z+z=-21+9 | | 55,000=10,000(1.02)6x | | x-5=0.1+0.5 | | 6.82=3.9+x | | 16c-4c=144-24 | | 9+15.75m+0.05=16.53m-0.13m | | n=15=33 | | 5m=10m=2 | | x÷-3+-9=-5+2 | | -7-3d+4=-2d+1 | | 6x-5(x-6)=12 | | 4z-z=21-9 | | 2(2x-1)=5/2 | | 9(3+b)=4(b+14) | | X+3.9=6.82,x= |

Equations solver categories