If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2000-2x)(x)=2000
We move all terms to the left:
(2000-2x)(x)-(2000)=0
We add all the numbers together, and all the variables
(-2x+2000)x-2000=0
We multiply parentheses
-2x^2+2000x-2000=0
a = -2; b = 2000; c = -2000;
Δ = b2-4ac
Δ = 20002-4·(-2)·(-2000)
Δ = 3984000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3984000}=\sqrt{1600*2490}=\sqrt{1600}*\sqrt{2490}=40\sqrt{2490}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2000)-40\sqrt{2490}}{2*-2}=\frac{-2000-40\sqrt{2490}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2000)+40\sqrt{2490}}{2*-2}=\frac{-2000+40\sqrt{2490}}{-4} $
| Y=-3x^2+32x-120 | | x-7.7=18.125 | | x-7.7=37.51 | | .45x-0.2(×-5)=0.25 | | x-7.7=12.5 | | 2/u-3/7u=1 | | 6-(4n-3)=1-5n | | (2x-9)=(3x-10) | | 9x=7+43 | | 3w=9=6 | | 43=p(1.17)+3 | | 4=a(2)^2 | | 4+u=-6 | | -9=-2+y | | 3x+20=-6x+34 | | 3x+-20=6x+11 | | 7(x-3)^2=63 | | 8=(2x)/(0.2-x) | | 3x+20=-6x+11 | | 2x19=-5 | | 9n+68=7n-2(n=2) | | 38x=44 | | X2-6/2-x2+4/4=5 | | 19+2x=5x-5 | | 0.375x=15 | | 100=15x-5x | | W=90-1.2l | | W=90-1l | | L=0.2(w) | | 120=-16t2+95t | | 120=-16t^2+95t | | 2x+(2x-7)=40 |