If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(20y-11)+(4y+6)(7y-7)=360
We move all terms to the left:
(20y-11)+(4y+6)(7y-7)-(360)=0
We get rid of parentheses
20y+(4y+6)(7y-7)-11-360=0
We multiply parentheses ..
(+28y^2-28y+42y-42)+20y-11-360=0
We add all the numbers together, and all the variables
(+28y^2-28y+42y-42)+20y-371=0
We get rid of parentheses
28y^2-28y+42y+20y-42-371=0
We add all the numbers together, and all the variables
28y^2+34y-413=0
a = 28; b = 34; c = -413;
Δ = b2-4ac
Δ = 342-4·28·(-413)
Δ = 47412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47412}=\sqrt{36*1317}=\sqrt{36}*\sqrt{1317}=6\sqrt{1317}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-6\sqrt{1317}}{2*28}=\frac{-34-6\sqrt{1317}}{56} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+6\sqrt{1317}}{2*28}=\frac{-34+6\sqrt{1317}}{56} $
| 2c=c+20 | | 25+2n=5(-5n+5) | | 2z=z+10 | | (5x^2)3=10 | | a-5+6a=72 | | -13-x=-6x-7(7-2x) | | 2=14−3q | | 0.85x=73.1 | | 1.7+2f=8.4 | | 20 = y3+ 17 | | -v/8=50 | | -3(1-8b)+3b=5b-25 | | 7x^2+10=17 | | -52=-v/7 | | 3w-9=½w+16 | | 4+2.2h=-3,7 | | 4(-5-7n)-5=-25-8n | | 14-5x=10x+5 | | 23=v/4-11 | | 3=12/t=6 | | x^+6x-6=10 | | (7n+12)+6n+(13n-16)=360 | | 1-9=3x-3 | | 6x+8-4+6=2x+6+8 | | 4(x+0.3)=1.7 | | 4-6r+3r=16 | | 2(6x+4)-6+2x=3(4x+3)1 | | 4(-7n-8)=-8-4n | | x^-12x+59=0 | | -12=3w-6 | | 1=5v-3-6v | | 1/4b+3=13 |