(21/2)d=71/2

Simple and best practice solution for (21/2)d=71/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21/2)d=71/2 equation:



(21/2)d=71/2
We move all terms to the left:
(21/2)d-(71/2)=0
Domain of the equation: 2)d!=0
d!=0/1
d!=0
d∈R
We add all the numbers together, and all the variables
(+21/2)d-(+71/2)=0
We multiply parentheses
21d^2-(+71/2)=0
We get rid of parentheses
21d^2-71/2=0
We multiply all the terms by the denominator
21d^2*2-71=0
Wy multiply elements
42d^2-71=0
a = 42; b = 0; c = -71;
Δ = b2-4ac
Δ = 02-4·42·(-71)
Δ = 11928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11928}=\sqrt{4*2982}=\sqrt{4}*\sqrt{2982}=2\sqrt{2982}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2982}}{2*42}=\frac{0-2\sqrt{2982}}{84} =-\frac{2\sqrt{2982}}{84} =-\frac{\sqrt{2982}}{42} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2982}}{2*42}=\frac{0+2\sqrt{2982}}{84} =\frac{2\sqrt{2982}}{84} =\frac{\sqrt{2982}}{42} $

See similar equations:

| 4x-4/8+7x-7/10=-6 | | r/12=-1 | | 3x2+4x+14=0 | | 2x2-7=74 | | 2y-2/5=4 | | 1=7x-12=6x-1 | | k+15=-32 | | h-15=-32 | | X-7=13-x= | | 0.08x+8x+24=32 | | 4x-6=x+9. | | 3x/8=-21 | | -2(x+3)-1=5 | | 0.04x+5x+15=25 | | 2=1+x(6) | | 3x2-1=54 | | -4=x/5+1 | | -4(x+)-6=10 | | 0.04x+5x+15=16 | | 10(7x~5)=300 | | 0.04x+5x+15=15 | | 10x=25x+5 | | 0.04x+5x+15=20 | | 0.04x+5x+15=21 | | 10(4x+2)=5(6x+10) | | 2(3-(3-5r))-r=-6+3(2+3r) | | 2(3(4(5x-6)-7)-8(9(10-11x)-12)=13 | | (1-n)=-6-6n | | -5(r+2=-58 | | 5x2-20=30 | | 9x-1=-9(-1-x) | | 33(16-x)=66 |

Equations solver categories