(21/2)x+(31/2)x=18

Simple and best practice solution for (21/2)x+(31/2)x=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21/2)x+(31/2)x=18 equation:



(21/2)x+(31/2)x=18
We move all terms to the left:
(21/2)x+(31/2)x-(18)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+21/2)x+(+31/2)x-18=0
We multiply parentheses
21x^2+31x^2-18=0
We add all the numbers together, and all the variables
52x^2-18=0
a = 52; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·52·(-18)
Δ = 3744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3744}=\sqrt{144*26}=\sqrt{144}*\sqrt{26}=12\sqrt{26}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{26}}{2*52}=\frac{0-12\sqrt{26}}{104} =-\frac{12\sqrt{26}}{104} =-\frac{3\sqrt{26}}{26} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{26}}{2*52}=\frac{0+12\sqrt{26}}{104} =\frac{12\sqrt{26}}{104} =\frac{3\sqrt{26}}{26} $

See similar equations:

| 3x+5+2x-10+8x-15=180 | | 5y-3+2y-12=20 | | 10+3(5m+2)=-m | | 19=4w+9 | | 7y-28=64+3y | | 2/3(15x-9)=14 | | 1/5+x=3/8 | | 64+78+x=80 | | 2r+6r=-16 | | 2x+55+x-19+x=180 | | 2b-2.1=7.9 | | 5×(a+3)=40 | | (4x+9)(5x+2)=0 | | 5x-3.5=6.5 | | x/2=1/3)/(3/2) | | -1.1+w/8=13.9 | | 12x-8x=64 | | 3x+2(-17)=6 | | 4n/5+3/5=65 | | x+37=2x-17 | | 2(x+7)+9=12 | | 56-6x=x | | 8n/5+1/5=75 | | 4(5-y)=8(3-y | | 1/2w+2;w=1/9 | | -3x(x^2+7x-8)=0 | | 144+9m=270 | | 9b+5-9=49 | | x+37+2x-17=180 | | 5(x+8)=9(x+1) | | y/6-2.5=-21.7 | | 2(c-3)-7=12-5(c-2) |

Equations solver categories