(21/4)z+44=64

Simple and best practice solution for (21/4)z+44=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21/4)z+44=64 equation:



(21/4)z+44=64
We move all terms to the left:
(21/4)z+44-(64)=0
Domain of the equation: 4)z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+21/4)z+44-64=0
We add all the numbers together, and all the variables
(+21/4)z-20=0
We multiply parentheses
21z^2-20=0
a = 21; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·21·(-20)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{105}}{2*21}=\frac{0-4\sqrt{105}}{42} =-\frac{4\sqrt{105}}{42} =-\frac{2\sqrt{105}}{21} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{105}}{2*21}=\frac{0+4\sqrt{105}}{42} =\frac{4\sqrt{105}}{42} =\frac{2\sqrt{105}}{21} $

See similar equations:

| -4(x+-24)+8=-8 | | 5y+55=120 | | 4.2x+2.6=-5.8 | | 5a+3a=3a+1 | | 13/5=y/10 | | (7x-13)+(x+29)+(3x+5)=180 | | 21/4z+44=64 | | 5y+55=130 | | -2x4=3-2x | | 15.47+0.08(x+3)=16.48-0.09x | | 8x-(-46)+(-6x)=-50 | | (8x-26)=(2x+34) | | -16k+89=9 | | 3/8x-12=6 | | 4.905t^2+5t=0 | | h+40=12 | | -3(2x-3)+10x=29 | | W=1x-3 | | (5*k)-13=15. | | 6(m+400)=30m-200 | | 0-7y=-63 | | 10(x-3)=2(x+5) | | 3x+12=2x+6+x-12 | | 1+0.8n=2+0.75n | | 6p-43+3p=11 | | k=5k^2-(k-8)+3k | | 2^x-18=0 | | -8+5m=-43 | | W=3x-3 | | 6p−43+3p=11 | | (7x-12)=(2x+38) | | 9q+17.5=-0.5 |

Equations solver categories