(22+x)(28+x)=722

Simple and best practice solution for (22+x)(28+x)=722 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (22+x)(28+x)=722 equation:



(22+x)(28+x)=722
We move all terms to the left:
(22+x)(28+x)-(722)=0
We add all the numbers together, and all the variables
(x+22)(x+28)-722=0
We multiply parentheses ..
(+x^2+28x+22x+616)-722=0
We get rid of parentheses
x^2+28x+22x+616-722=0
We add all the numbers together, and all the variables
x^2+50x-106=0
a = 1; b = 50; c = -106;
Δ = b2-4ac
Δ = 502-4·1·(-106)
Δ = 2924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2924}=\sqrt{4*731}=\sqrt{4}*\sqrt{731}=2\sqrt{731}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{731}}{2*1}=\frac{-50-2\sqrt{731}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{731}}{2*1}=\frac{-50+2\sqrt{731}}{2} $

See similar equations:

| 3a=-2a+15 | | x+52+x+62+90=180 | | x+63+78+x+55=180 | | 5x+10+6x-8+90=180 | | 1+59x+30x+90=180 | | 4x+8+10x+60=180 | | 51+x+x+76+73=180 | | x+71+46+x+73=180 | | x+39+x+84+64=180 | | x+39+x+84+65=180 | | 6x-1+12x+3+70=180 | | 71+x+x+91+40=180 | | 13x-2+10x+90=180 | | x+64+x+84+50=180 | | 350=x*0.2 | | 350=x+0.2 | | 800x=0.25 | | 800*x=0.25 | | d=2.5-5t | | 10+5x=2+3x | | -12x^2-96x+108=0 | | y=14-0.5x.x=30 | | 6x-4=9x+12. | | 10x+4=-20x-6 | | 2*s=s+5 | | 97=7x+2(x-6) | | a/3-2a/6+5a/9=34/9 | | 3x-15+2x+17=180 | | (d^2+4d+6)y=0 | | 0.9(0.5b+0.8)0.4(0.6b+1.8)=0.21 | | 3^(x+1)=-2/3 | | 4x^2+42x+300=0 |

Equations solver categories