(22/15)x=x+77

Simple and best practice solution for (22/15)x=x+77 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (22/15)x=x+77 equation:



(22/15)x=x+77
We move all terms to the left:
(22/15)x-(x+77)=0
Domain of the equation: 15)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+22/15)x-(x+77)=0
We multiply parentheses
22x^2-(x+77)=0
We get rid of parentheses
22x^2-x-77=0
We add all the numbers together, and all the variables
22x^2-1x-77=0
a = 22; b = -1; c = -77;
Δ = b2-4ac
Δ = -12-4·22·(-77)
Δ = 6777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6777}=\sqrt{9*753}=\sqrt{9}*\sqrt{753}=3\sqrt{753}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{753}}{2*22}=\frac{1-3\sqrt{753}}{44} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{753}}{2*22}=\frac{1+3\sqrt{753}}{44} $

See similar equations:

| (x-3)^2+x=28 | | 22/15x=x+77 | | 5y+2=2y+17 | | 4y-15=14 | | -3y-5=14 | | -2850+149x+0.1x^2=0 | | x+x=2.5 | | -e/5=3 | | 20=10-m | | v/6=16 | | (3x-2)(x-2)=7 | | 2x+9x+180-7x=180 | | 3y-3÷4=y-7 | | 2x+5x+180-7x=180 | | 12-2g-6=g | | 5y+1=625 | | 1x-12=7 | | -2x-3=3-x | | 5^(x+1)+5^x=150 | | 3x+88/x+5=20 | | -24=6(m-1) | | 2y-27=5(y-3) | | f(4)=1/24+3 | | X/2+7=2(x-7) | | 20=4(q+44) | | 20=(4q+11) | | 20-4x=10-6x | | 20x-2x^2=-3 | | -16=4(n-1) | | -4.2+3=-9+1.8x | | 19+15y-6y=15 | | X^2=3+7y^2 |

Equations solver categories