(22/33)n-3=8

Simple and best practice solution for (22/33)n-3=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (22/33)n-3=8 equation:



(22/33)n-3=8
We move all terms to the left:
(22/33)n-3-(8)=0
Domain of the equation: 33)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+22/33)n-3-8=0
We add all the numbers together, and all the variables
(+22/33)n-11=0
We multiply parentheses
22n^2-11=0
a = 22; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·22·(-11)
Δ = 968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{968}=\sqrt{484*2}=\sqrt{484}*\sqrt{2}=22\sqrt{2}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{2}}{2*22}=\frac{0-22\sqrt{2}}{44} =-\frac{22\sqrt{2}}{44} =-\frac{\sqrt{2}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{2}}{2*22}=\frac{0+22\sqrt{2}}{44} =\frac{22\sqrt{2}}{44} =\frac{\sqrt{2}}{2} $

See similar equations:

| 48+(x-44)+4=180 | | 4x+2(-2x+1)=5 | | 9/7=2/3x-1/21 | | (9x-6)-(5x=7) | | 4x+7-5=22 | | 49x2+84x+36=0 | | 15x-9=-12x-36 | | 12x+8=14x-2 | | 13x+30=20 | | 7+13=2a | | 5n-17=2n | | 1/2x(2x-2)-0.4=2x+1.2-3x | | 30-5y=20 | | -15(8y-25)-2y=25y+21 | | 2=8-4a | | 8x+3=-2x-12 | | 2x-8x+x^2=375 | | 3(x-4)^(2/3)=75 | | 3(x-4)^2/3=75 | | x/1.2=0.6 | | (X+5)+2(x+5)=220 | | X/5+x/2=-1/5+3x/2 | | |-12a|=13(12-6) | | 4/9+(y)=1/9 | | 2x+-1.5=4.5 | | 4w-17=47 | | 12(y-1)+y+5=13y-7 | | x*2-x-15=0 | | 12a=123a-123 | | 7=1x+2 | | 2(4y+5)=8(y-3)=14 | | 6x+9=(-x)-7 |

Equations solver categories