(22x+4)(15x+5)+120=180

Simple and best practice solution for (22x+4)(15x+5)+120=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (22x+4)(15x+5)+120=180 equation:


Simplifying
(22x + 4)(15x + 5) + 120 = 180

Reorder the terms:
(4 + 22x)(15x + 5) + 120 = 180

Reorder the terms:
(4 + 22x)(5 + 15x) + 120 = 180

Multiply (4 + 22x) * (5 + 15x)
(4(5 + 15x) + 22x * (5 + 15x)) + 120 = 180
((5 * 4 + 15x * 4) + 22x * (5 + 15x)) + 120 = 180
((20 + 60x) + 22x * (5 + 15x)) + 120 = 180
(20 + 60x + (5 * 22x + 15x * 22x)) + 120 = 180
(20 + 60x + (110x + 330x2)) + 120 = 180

Combine like terms: 60x + 110x = 170x
(20 + 170x + 330x2) + 120 = 180

Reorder the terms:
20 + 120 + 170x + 330x2 = 180

Combine like terms: 20 + 120 = 140
140 + 170x + 330x2 = 180

Solving
140 + 170x + 330x2 = 180

Solving for variable 'x'.

Reorder the terms:
140 + -180 + 170x + 330x2 = 180 + -180

Combine like terms: 140 + -180 = -40
-40 + 170x + 330x2 = 180 + -180

Combine like terms: 180 + -180 = 0
-40 + 170x + 330x2 = 0

Factor out the Greatest Common Factor (GCF), '10'.
10(-4 + 17x + 33x2) = 0

Ignore the factor 10.

Subproblem 1

Set the factor '(-4 + 17x + 33x2)' equal to zero and attempt to solve: Simplifying -4 + 17x + 33x2 = 0 Solving -4 + 17x + 33x2 = 0 Begin completing the square. Divide all terms by 33 the coefficient of the squared term: Divide each side by '33'. -0.1212121212 + 0.5151515152x + x2 = 0 Move the constant term to the right: Add '0.1212121212' to each side of the equation. -0.1212121212 + 0.5151515152x + 0.1212121212 + x2 = 0 + 0.1212121212 Reorder the terms: -0.1212121212 + 0.1212121212 + 0.5151515152x + x2 = 0 + 0.1212121212 Combine like terms: -0.1212121212 + 0.1212121212 = 0.0000000000 0.0000000000 + 0.5151515152x + x2 = 0 + 0.1212121212 0.5151515152x + x2 = 0 + 0.1212121212 Combine like terms: 0 + 0.1212121212 = 0.1212121212 0.5151515152x + x2 = 0.1212121212 The x term is 0.5151515152x. Take half its coefficient (0.2575757576). Square it (0.06634527090) and add it to both sides. Add '0.06634527090' to each side of the equation. 0.5151515152x + 0.06634527090 + x2 = 0.1212121212 + 0.06634527090 Reorder the terms: 0.06634527090 + 0.5151515152x + x2 = 0.1212121212 + 0.06634527090 Combine like terms: 0.1212121212 + 0.06634527090 = 0.1875573921 0.06634527090 + 0.5151515152x + x2 = 0.1875573921 Factor a perfect square on the left side: (x + 0.2575757576)(x + 0.2575757576) = 0.1875573921 Calculate the square root of the right side: 0.433078968 Break this problem into two subproblems by setting (x + 0.2575757576) equal to 0.433078968 and -0.433078968.

Subproblem 1

x + 0.2575757576 = 0.433078968 Simplifying x + 0.2575757576 = 0.433078968 Reorder the terms: 0.2575757576 + x = 0.433078968 Solving 0.2575757576 + x = 0.433078968 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2575757576' to each side of the equation. 0.2575757576 + -0.2575757576 + x = 0.433078968 + -0.2575757576 Combine like terms: 0.2575757576 + -0.2575757576 = 0.0000000000 0.0000000000 + x = 0.433078968 + -0.2575757576 x = 0.433078968 + -0.2575757576 Combine like terms: 0.433078968 + -0.2575757576 = 0.1755032104 x = 0.1755032104 Simplifying x = 0.1755032104

Subproblem 2

x + 0.2575757576 = -0.433078968 Simplifying x + 0.2575757576 = -0.433078968 Reorder the terms: 0.2575757576 + x = -0.433078968 Solving 0.2575757576 + x = -0.433078968 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2575757576' to each side of the equation. 0.2575757576 + -0.2575757576 + x = -0.433078968 + -0.2575757576 Combine like terms: 0.2575757576 + -0.2575757576 = 0.0000000000 0.0000000000 + x = -0.433078968 + -0.2575757576 x = -0.433078968 + -0.2575757576 Combine like terms: -0.433078968 + -0.2575757576 = -0.6906547256 x = -0.6906547256 Simplifying x = -0.6906547256

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.1755032104, -0.6906547256}

Solution

x = {0.1755032104, -0.6906547256}

See similar equations:

| 39x-45=15x-24 | | 12+3m=m+7 | | x^4+3x^2+x+9=0 | | 7.95+17.00=x | | 55=-3x+4 | | 25-5/x=4 | | 128+16t-16t^2=32t | | 1/9u=1 | | (-9)-(22)= | | ln(4x)=25 | | 3(-2-6x)=222 | | x-20x=0 | | 5(X+2)=6+3 | | 7x-14(x+1)=-7x+19 | | 15x-5=15x-24 | | 4x^6-36x^4+x^2-12=0 | | 58+78+x=180 | | 11+3m=m+7 | | 3(d-2)=5d+8 | | 15x-15=15x-24 | | 541-64x=-803 | | 4(1+5x)=-174 | | Ln^2(3x)=8 | | 2x+213838=18 | | 2-3(-8x+4)+5x-2(3x+2)=-4(-2x-15)+3x-8 | | (-37)-(11)= | | 2x+5=-5x-5 | | 11=z | | x+2+90=180 | | -7x+6=-14x-15 | | 0=(x^2)-52x+689 | | 541+64x=-803 |

Equations solver categories