If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(24)(39)=(2x-4)(x-6)
We move all terms to the left:
(24)(39)-((2x-4)(x-6))=0
We multiply parentheses ..
-((+2x^2-12x-4x+24))+2439=0
We calculate terms in parentheses: -((+2x^2-12x-4x+24)), so:We get rid of parentheses
(+2x^2-12x-4x+24)
We get rid of parentheses
2x^2-12x-4x+24
We add all the numbers together, and all the variables
2x^2-16x+24
Back to the equation:
-(2x^2-16x+24)
-2x^2+16x-24+2439=0
We add all the numbers together, and all the variables
-2x^2+16x+2415=0
a = -2; b = 16; c = +2415;
Δ = b2-4ac
Δ = 162-4·(-2)·2415
Δ = 19576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19576}=\sqrt{4*4894}=\sqrt{4}*\sqrt{4894}=2\sqrt{4894}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{4894}}{2*-2}=\frac{-16-2\sqrt{4894}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{4894}}{2*-2}=\frac{-16+2\sqrt{4894}}{-4} $
| 1/x=2.5 | | 1d=2d+12 | | 1/2x+2=1/4x | | 6=3s−4(23−s) | | 3x+2(x+8)=51 | | -8+7x=-1 | | 1.2/2=t/3 | | 9x-9=-5 | | 5x+20=9x-22 | | (3x-2)^2/3=9 | | (2x+8)+(9x-4)=70 | | k+29/5=9 | | 22-2n=2 | | 2/15=3/2(4/9x2) | | 5x-9/3+x/2=10 | | t-78/2=6 | | -2(2x+1)=(-3x)+4 | | 9(d+3)=99 | | x9-9=-5 | | 7(r+1)=98 | | k+5/3=7 | | -2(z+4)=32 | | h+16/3=8 | | h+163= 8 | | 2x(3+7)=8x+4 | | c/3+16=18 | | 5/9x-5/3=7/5x-1/10 | | 18-4f=6 | | 18-4f=14 | | q/4+9=13 | | -1.5x=9(x+2.16) | | 1/3(x+5)=2 |