(24)(42)=(2x-4)(x-8)

Simple and best practice solution for (24)(42)=(2x-4)(x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (24)(42)=(2x-4)(x-8) equation:



(24)(42)=(2x-4)(x-8)
We move all terms to the left:
(24)(42)-((2x-4)(x-8))=0
We multiply parentheses ..
-((+2x^2-16x-4x+32))+2442=0
We calculate terms in parentheses: -((+2x^2-16x-4x+32)), so:
(+2x^2-16x-4x+32)
We get rid of parentheses
2x^2-16x-4x+32
We add all the numbers together, and all the variables
2x^2-20x+32
Back to the equation:
-(2x^2-20x+32)
We get rid of parentheses
-2x^2+20x-32+2442=0
We add all the numbers together, and all the variables
-2x^2+20x+2410=0
a = -2; b = 20; c = +2410;
Δ = b2-4ac
Δ = 202-4·(-2)·2410
Δ = 19680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19680}=\sqrt{16*1230}=\sqrt{16}*\sqrt{1230}=4\sqrt{1230}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{1230}}{2*-2}=\frac{-20-4\sqrt{1230}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{1230}}{2*-2}=\frac{-20+4\sqrt{1230}}{-4} $

See similar equations:

| 3u−8=8+3u | | 7f+4=2+7f | | 6x+8=-3x-10 | | 3f+6=4+3f | | 3^x-12=-4x+23 | | 3^x-12=-4+23 | | (h÷3)-14=-11 | | 4k–7=-1 | | X+1/2x=10000 | | 5x-17+4x+2=180 | | 14+9m=-9 | | 3x+5+61=90 | | 12=5x-13x-14 | | 3.4=-13.6+(-3.13c)+1.7c | | 25x-1=48 | | 10=2^x-2 | | 63=3(m-72) | | 5=-9+p÷4 | | 14x-3=8x+5 | | -8y=-7+20 | | 1.25x=10.5 | | 9x+15=115 | | 14x-3+8x+5=180 | | 5/6x=-2/5x | | 11-1=9x+1 | | 6.21=f | | x+1+2x+3=38 | | 3m–5=-8 | | z-8-2=9 | | 110=-5x+4(-4-4x) | | 96=2(x+6)+2(2x) | | 3n-4=2n+4 |

Equations solver categories