If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(24)(42)=(2x-6)(x+6)
We move all terms to the left:
(24)(42)-((2x-6)(x+6))=0
We multiply parentheses ..
-((+2x^2+12x-6x-36))+2442=0
We calculate terms in parentheses: -((+2x^2+12x-6x-36)), so:We get rid of parentheses
(+2x^2+12x-6x-36)
We get rid of parentheses
2x^2+12x-6x-36
We add all the numbers together, and all the variables
2x^2+6x-36
Back to the equation:
-(2x^2+6x-36)
-2x^2-6x+36+2442=0
We add all the numbers together, and all the variables
-2x^2-6x+2478=0
a = -2; b = -6; c = +2478;
Δ = b2-4ac
Δ = -62-4·(-2)·2478
Δ = 19860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19860}=\sqrt{4*4965}=\sqrt{4}*\sqrt{4965}=2\sqrt{4965}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{4965}}{2*-2}=\frac{6-2\sqrt{4965}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{4965}}{2*-2}=\frac{6+2\sqrt{4965}}{-4} $
| 15+10h=865 | | 121+m=619 | | 15+10h=515 | | 3y+3=-5 | | 2.4(-5.4+5x)=-7 | | x/3+12=23 | | -4.8f+6.4=-8.48= | | 7.5w=94.5w=94.5 | | 161/2d=1481/2 | | 5x+6=8x+21 | | 6n^2+36=0 | | 2x2−18x=0 | | 9x+8=54 | | 65=0.2(w-(10)4 | | 6n^2=36=0 | | 5/9g+8=1/8+1 | | 5x+2.5=3x=3.7 | | 49=3.14*r*r | | 5(2/11)+4x=10x-7 | | 4v-16=4(v-4) | | 5x-35+9=3x-18 | | y/9-3=8 | | 5a-2=23a | | 16+4/5-x=6x | | 4v-16=4(v-4 | | 41/5d=292/5 | | 4x-2.6=8.6 | | x+11.4=-7.9 | | 42/3-x=51/5 | | 14+7=x+x=x | | -15(x-6)=-120 | | 18=y+27-4y |