(240/x)-x=4

Simple and best practice solution for (240/x)-x=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (240/x)-x=4 equation:



(240/x)-x=4
We move all terms to the left:
(240/x)-x-(4)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+240/x)-x-4=0
We add all the numbers together, and all the variables
-1x+(+240/x)-4=0
We get rid of parentheses
-1x+240/x-4=0
We multiply all the terms by the denominator
-1x*x-4*x+240=0
We add all the numbers together, and all the variables
-4x-1x*x+240=0
Wy multiply elements
-1x^2-4x+240=0
a = -1; b = -4; c = +240;
Δ = b2-4ac
Δ = -42-4·(-1)·240
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{61}}{2*-1}=\frac{4-4\sqrt{61}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{61}}{2*-1}=\frac{4+4\sqrt{61}}{-2} $

See similar equations:

| x^-10=-10 | | 5(2x-5)+2(x-3)=4(x-1) | | x4−5x2−36=0 | | x+(x*0.03)=70.98 | | (6-x)=18 | | 4c-54c=11 | | 2n^2+5=0 | | (4×-5)+(2×+1)=n | | 2x^+7x=15 | | x+(x*0.03)=50.69 | | 5(w-0.4)=-12 | | -3a=5.1 | | X^-10x=-21 | | 3/4t-4=1-3/4t | | 5x+32=4-2× | | x+4=141 | | 11=3x+5=23 | | 2x+9=53 | | 6(x+8=-36) | | m/4+6=m | | x/3-2x/7=4 | | 3x+12=40,5 | | -8=x/2+3 | | 16t^2+15t+1=0 | | 2X+7+y=57 | | X-Y(13-3x)=8 | | 3x+2x=8x-7.5 | | 2^2-8x-24=0 | | 4x²-x-4=0 | | X=(180-x)-74 | | 50-23+x/2=201 | | X=(180-x)+98 |

Equations solver categories