(25-2x)(15-2x)-231=375

Simple and best practice solution for (25-2x)(15-2x)-231=375 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (25-2x)(15-2x)-231=375 equation:



(25-2x)(15-2x)-231=375
We move all terms to the left:
(25-2x)(15-2x)-231-(375)=0
We add all the numbers together, and all the variables
(-2x+25)(-2x+15)-231-375=0
We add all the numbers together, and all the variables
(-2x+25)(-2x+15)-606=0
We multiply parentheses ..
(+4x^2-30x-50x+375)-606=0
We get rid of parentheses
4x^2-30x-50x+375-606=0
We add all the numbers together, and all the variables
4x^2-80x-231=0
a = 4; b = -80; c = -231;
Δ = b2-4ac
Δ = -802-4·4·(-231)
Δ = 10096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10096}=\sqrt{16*631}=\sqrt{16}*\sqrt{631}=4\sqrt{631}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-4\sqrt{631}}{2*4}=\frac{80-4\sqrt{631}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+4\sqrt{631}}{2*4}=\frac{80+4\sqrt{631}}{8} $

See similar equations:

| 4k+5=15 | | x^2+7x-720=0 | | h=-16t^2+95t+5.2 | | 15x+75-20x-30=6x+42 | | 9x-20x=7 | | x+5/2-2x+3/3=x+7/5 | | 4j+4j+60+60=400 | | 4j=280 | | -22+y=-5 | | 12x30-(3x)=114 | | 4(x+2)+3(x+4)=27 | | 30-5v=10-7v | | 5m*8=43 | | t-305^t=-1 | | t(n)=30(5)^n-1 | | 175=-5x-5(3x+9) | | -30=-3x-2(-2x+21) | | -7x-3(-7x-3+4)=-82 | | 5k+3k+2=4k+8 | | -3x+9-2x=12-5x | | 2a-1+6a-5+90=180 | | 5(2u-3)=29 | | y+25=5y+16 | | y+25=5y+10 | | x+150=3x^2+23 | | 12=-49-(6x-3) | | 9m+18=45 | | -t=-(54) | | -t=-19.42 | | -(-t)=2.54 | | 9r=4r+50 | | c(x)=0.25x^2-3x+12 |

Equations solver categories