If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(25/x)+16x-(30/x)=0
Domain of the equation: x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+25/x)+16x-(+30/x)=0
We add all the numbers together, and all the variables
16x+(+25/x)-(+30/x)=0
We get rid of parentheses
16x+25/x-30/x=0
We multiply all the terms by the denominator
16x*x+25-30=0
We add all the numbers together, and all the variables
16x*x-5=0
Wy multiply elements
16x^2-5=0
a = 16; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·16·(-5)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*16}=\frac{0-8\sqrt{5}}{32} =-\frac{8\sqrt{5}}{32} =-\frac{\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*16}=\frac{0+8\sqrt{5}}{32} =\frac{8\sqrt{5}}{32} =\frac{\sqrt{5}}{4} $
| 2(a+4)=2a+8 | | 25-30+16x^2=0 | | x*43=1999,99 | | 8w=28 | | x/x-1+2/x^2-1=0 | | 25-30x+16x^2=0 | | (4-y)+1y=7 | | 7l+11=23 | | 3X-20=4x-10 | | (4-y)+y=7 | | X+1/x=5/2 | | 9+(9+0.5x)=x | | (12-y)+4y=21 | | m/8=3 | | 7x-2=2x-18 | | 2x+32x=0 | | (X/3)+2x=14 | | 5=0.6v+11 | | (x/2+x/3)=10 | | 18x^2+9-35=0 | | 24h-9h^2=12 | | 8y+13=25y+26 | | 3/10=X/y | | X^2+6x-46=0 | | 6-2a=8 | | 3/4(x+1)=x-3 | | -(j-3j+8)=0 | | 0.4y(0.25-y)=0.8 | | x+.05x=5900 | | 8x+120=120-10x | | -4+w3=-4 | | 2c+6c=-64 |