If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (2a + -1)(a + 3a + 5) = 0 Reorder the terms: (-1 + 2a)(a + 3a + 5) = 0 Reorder the terms: (-1 + 2a)(5 + a + 3a) = 0 Combine like terms: a + 3a = 4a (-1 + 2a)(5 + 4a) = 0 Multiply (-1 + 2a) * (5 + 4a) (-1(5 + 4a) + 2a * (5 + 4a)) = 0 ((5 * -1 + 4a * -1) + 2a * (5 + 4a)) = 0 ((-5 + -4a) + 2a * (5 + 4a)) = 0 (-5 + -4a + (5 * 2a + 4a * 2a)) = 0 (-5 + -4a + (10a + 8a2)) = 0 Combine like terms: -4a + 10a = 6a (-5 + 6a + 8a2) = 0 Solving -5 + 6a + 8a2 = 0 Solving for variable 'a'. Factor a trinomial. (-5 + -4a)(1 + -2a) = 0Subproblem 1
Set the factor '(-5 + -4a)' equal to zero and attempt to solve: Simplifying -5 + -4a = 0 Solving -5 + -4a = 0 Move all terms containing a to the left, all other terms to the right. Add '5' to each side of the equation. -5 + 5 + -4a = 0 + 5 Combine like terms: -5 + 5 = 0 0 + -4a = 0 + 5 -4a = 0 + 5 Combine like terms: 0 + 5 = 5 -4a = 5 Divide each side by '-4'. a = -1.25 Simplifying a = -1.25Subproblem 2
Set the factor '(1 + -2a)' equal to zero and attempt to solve: Simplifying 1 + -2a = 0 Solving 1 + -2a = 0 Move all terms containing a to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -2a = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -2a = 0 + -1 -2a = 0 + -1 Combine like terms: 0 + -1 = -1 -2a = -1 Divide each side by '-2'. a = 0.5 Simplifying a = 0.5Solution
a = {-1.25, 0.5}
| 435*13= | | X+3=-3-5 | | 46.1*46.1=18.5*18.5+2(11.17)x | | 2(3x-5)=-(x-11) | | 2s-2=2 | | (a+2a-9)(a+3)= | | -15.00+2.00w=5 | | 12+7y-2=52 | | (y+3y-6)(2y+3)= | | 0=2x^2+6kx+8 | | 7r^2-14r-7=0 | | A=5W+10Z | | 2.00r-15.00=9 | | 12x-8=16x+4 | | 4x^2-3=x^2-11x | | (3x+2y)(2y+3x)= | | -4g+6=14 | | 6(x)-x=0 | | (z-2x)(z-2x)= | | 0.015x-0.030=0.030 | | 76=b+4 | | 3y(2+4y+5y^2)= | | 4(x-5)-7-5(3-2x)= | | (a+b)(2a-3b)= | | g-92=-74 | | (7y-4t)(2y+5t)= | | 2m+18=5m-12 | | 15(2x-3)-2(x-2)=26 | | 2x^2-52x+338=0 | | -3d=-75 | | cos(x)+cos(7x)-cos(4x)=0 | | (3t+2q)(7t-9q)= |