If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (2a + -3b)(2a + -3b) = 0 Multiply (2a + -3b) * (2a + -3b) (2a * (2a + -3b) + -3b * (2a + -3b)) = 0 ((2a * 2a + -3b * 2a) + -3b * (2a + -3b)) = 0 Reorder the terms: ((-6ab + 4a2) + -3b * (2a + -3b)) = 0 ((-6ab + 4a2) + -3b * (2a + -3b)) = 0 (-6ab + 4a2 + (2a * -3b + -3b * -3b)) = 0 (-6ab + 4a2 + (-6ab + 9b2)) = 0 Reorder the terms: (-6ab + -6ab + 4a2 + 9b2) = 0 Combine like terms: -6ab + -6ab = -12ab (-12ab + 4a2 + 9b2) = 0 Solving -12ab + 4a2 + 9b2 = 0 Solving for variable 'a'. Factor a trinomial. (2a + -3b)(2a + -3b) = 0Subproblem 1
Set the factor '(2a + -3b)' equal to zero and attempt to solve: Simplifying 2a + -3b = 0 Solving 2a + -3b = 0 Move all terms containing a to the left, all other terms to the right. Add '3b' to each side of the equation. 2a + -3b + 3b = 0 + 3b Combine like terms: -3b + 3b = 0 2a + 0 = 0 + 3b 2a = 0 + 3b Remove the zero: 2a = 3b Divide each side by '2'. a = 1.5b Simplifying a = 1.5bSubproblem 2
Set the factor '(2a + -3b)' equal to zero and attempt to solve: Simplifying 2a + -3b = 0 Solving 2a + -3b = 0 Move all terms containing a to the left, all other terms to the right. Add '3b' to each side of the equation. 2a + -3b + 3b = 0 + 3b Combine like terms: -3b + 3b = 0 2a + 0 = 0 + 3b 2a = 0 + 3b Remove the zero: 2a = 3b Divide each side by '2'. a = 1.5b Simplifying a = 1.5bSolution
a = {1.5b, 1.5b}
| X(x+13)=608 | | X+15=2x-20 | | 2y(6y-5)(3y+2)= | | 8(2-n)-1=n+3(-5n-1)+7n | | 3[x+10]+5=38 | | (4x+3y)(6x-y)= | | (b-2)(3c+2)= | | 68-y=265 | | X-6x-9=6 | | -2a(3a-4b)= | | y=3x^2-8+5 | | -y+76=187 | | 113=236-w | | 5+5(3x+5)=8x+(3x-18) | | 3xy(4x-5xy+2z)= | | 6y-36=6(7y+6) | | 2x^2+7x-1=0 | | 5a-3=11+7a | | 5a-3=11+7 | | (y+1)-(y-9)=2(5y-6)-8y | | -3(-5x-14)=17x+9 | | -2x+5=5x+4 | | 1+2-3+4-5+6-7+8x= | | -u-(5+13u)+10=-6(4u+11)-9 | | x^2-10x-12=0 | | 2+2=xf | | 2+2=f | | 5(-3y-4)+13=11y+7(5-4y) | | p^3+8p^2=18p | | 3(1+5)-3(-8x-7)=-45 | | -12d-16=-2(d+8)-12d | | x=x^3-x^2-14x+24 |