(2a-4)(2a+4)=8a2-64

Simple and best practice solution for (2a-4)(2a+4)=8a2-64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2a-4)(2a+4)=8a2-64 equation:



(2a-4)(2a+4)=8a^2-64
We move all terms to the left:
(2a-4)(2a+4)-(8a^2-64)=0
We use the square of the difference formula
4a^2-(8a^2-64)-16=0
We get rid of parentheses
4a^2-8a^2+64-16=0
We add all the numbers together, and all the variables
-4a^2+48=0
a = -4; b = 0; c = +48;
Δ = b2-4ac
Δ = 02-4·(-4)·48
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-4}=\frac{0-16\sqrt{3}}{-8} =-\frac{16\sqrt{3}}{-8} =-\frac{2\sqrt{3}}{-1} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-4}=\frac{0+16\sqrt{3}}{-8} =\frac{16\sqrt{3}}{-8} =\frac{2\sqrt{3}}{-1} $

See similar equations:

| y+127=180 | | y+53+127=180 | | 2.25*3=x | | 2.25*3=x | | X2-17x+360=0 | | -4x*3=x | | y+115+45=180 | | 0.45*3=x | | 2y+2=28 | | (3x-17)+4=180 | | 9y-3=5y-2 | | 29+x=39 | | n2-11n+10=0 | | N2+2n-73=0 | | 6t+9t=-9+5 | | 8z+11=5 | | 3x-3=27-2x=3x+7 | | 2-x3=x4 | | 3x+7=1/2 | | 6x-5(1-x)=10x+6. | | 1+4x=3x-2 | | 1565/y=5 | | (2x-30)+(x+60)=180 | | 8x=30*100 | | 4x/9+3/2=11 | | 53+(5x-4)=90 | | y+2*y+9*y+18*y=0 | | 8y+7=6y+2= | | i=55= | | n=28/196•49= | | 5a+33=-2a-44= | | x*7+x*x*x*x*x*x*x=82 |

Equations solver categories