If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2b-90)+(b+45)+3/2b+90+b=540
We move all terms to the left:
(2b-90)+(b+45)+3/2b+90+b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(2b-90)+(b+45)+3/2b-450=0
We get rid of parentheses
b+2b+b+3/2b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| (3)/(2)x+2=(1)/(2)-(1)/(2)x | | 3x-12=4-x | | 5r+-7r=16 | | 5y+25=-3y-7 | | (y+6)^2=2y^2+20y+48 | | 90+b+3/2b+b+45+(2b-90)=540 | | 4.n+8=22 | | X2+3/2x+9/16=3 | | 9=4(p-5)+5 | | (X)=-x+3 | | 1.n+5=12 | | 12x=3x+6 | | 5x+7=-6x-5 | | 2x+3x+2=6x-23 | | 47+2k=180 | | 22t=16t^2 | | 10x-6=14x+10 | | Y=0.32x+18 | | 2k+47=180 | | 6+2a+5a=-15 | | 3n+16=30+12n | | 2(t-(4t+9)+1)=2(t+8) | | -5(v+4)+2v+7=6v+7 | | (10x-5)(4x+3)=180 | | 8*7=5(k-2) | | 4x+9+x-8=1 | | 2(4w-1)=-10(-w-3)+4 | | 2/9=k-2/6 | | 7.5/1.5=x/1 | | -0.3x-0.4=1.2 | | k/3-4=-16 | | -7(m+2)-m-5=-8(m+5)+21 |