(2b-90)+(b+45)+3/2b+b+90=540

Simple and best practice solution for (2b-90)+(b+45)+3/2b+b+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2b-90)+(b+45)+3/2b+b+90=540 equation:



(2b-90)+(b+45)+3/2b+b+90=540
We move all terms to the left:
(2b-90)+(b+45)+3/2b+b+90-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(2b-90)+(b+45)+3/2b-450=0
We get rid of parentheses
b+2b+b+3/2b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 2/3(5t-3)=38 | | 11/12n-1=100 | | 4/9x-3x+2/3=4/9 | | -2(8m+8)=-16 | | 6+d=14 | | -3y-5=22 | | x²-2x=24 | | -4(b-7)-36=84 | | 3t−18=4(−3−​4/​3​​t) | | 180=4x+7+20x+8 | | 6x+2x=Y | | x/x=17 | | 7/5w=4/9 | | 4(-4p-1)+6=10 | | 1x-6x=10 | | 2/3x-4=-20 | | 180=4x=7+20x+8 | | d^2=13d+36=0 | | 5(x-3)+7=5x-8 | | 8y+(+8y)=16y | | 8y+2y-102+6=180 | | 4h^2+12h=0 | | x2+3x=130 | | 10x-15=15-10x | | 13=2x-11 | | p^2-6p+8P=0 | | -6(8+k)-3k=-23-4k | | 28.2=1/2(7*h) | | 180=(4x+70)+(20x+8) | | 8/x-3+3/x+5=20/(x+5)(x-3) | | 120+0.40x=60+0.80X | | 10-16x-13=9-9-12 |

Equations solver categories