(2b-90)+(b+45)+90+b+3/2b=540

Simple and best practice solution for (2b-90)+(b+45)+90+b+3/2b=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2b-90)+(b+45)+90+b+3/2b=540 equation:



(2b-90)+(b+45)+90+b+3/2b=540
We move all terms to the left:
(2b-90)+(b+45)+90+b+3/2b-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(2b-90)+(b+45)+3/2b-450=0
We get rid of parentheses
b+2b+b+3/2b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| -13+6n=-13+3n | | 6k+6=7k+4 | | 4x(3=8) | | 50x-14040=12500+20x | | 1/2(12)=-2/3y+10 | | -8-8x=8(x+1) | | n-6/2=-6 | | 3(17x–6.5)= | | -7h+8=-5h | | -6(3x-5)+8x=4(x+9) | | 3n+4n=4 | | 2(2x-7)=8 | | 2(h-2)=8 | | 2(x-2)=(2/7)(x+4) | | 1=1=+8n+5n | | 180=11x-47+6x+2 | | 2q-8=-2q | | 0.06x+0.04x(x+7000)=680 | | 26-x=40-3x | | -2x(4x-2)-2x=54 | | 17-×=-3x+7 | | 3(x-3)=3(x−3)= | | 3x+17=2x-15 | | -6x-15=3 | | 16−3p=32 | | 2(4x-12)=24 | | 7-(9x-15)=-14-x-12 | | 2/4-3x=5 | | 1b+1+2=18 | | 6-6s=-5s | | |4x-8|=-12 | | x-5-1=-6 |

Equations solver categories