If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2b-90)+3/2b+b+(b+45)=540
We move all terms to the left:
(2b-90)+3/2b+b+(b+45)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(2b-90)+3/2b+(b+45)-540=0
We get rid of parentheses
b+2b+3/2b+b-90+45-540=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-540*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-1080b+3=0
We add all the numbers together, and all the variables
8b^2-1170b+3=0
a = 8; b = -1170; c = +3;
Δ = b2-4ac
Δ = -11702-4·8·3
Δ = 1368804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1368804}=\sqrt{4*342201}=\sqrt{4}*\sqrt{342201}=2\sqrt{342201}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1170)-2\sqrt{342201}}{2*8}=\frac{1170-2\sqrt{342201}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1170)+2\sqrt{342201}}{2*8}=\frac{1170+2\sqrt{342201}}{16} $
| 90x=60x+480-10 | | 4z+16=6z+4 | | -3(x+20)=-90 | | –(8m+4)=4m–2(6m+2) | | 2x-1=1-2x-3 | | –5a−–11a+3=9 | | 25x2=225 | | 1/3(6x-3)+4=5(x+9) | | 52=3x+1 | | m/3-2=-15 | | 30x^2=20x | | 4x+16x-4=4(5x+6) | | -105(1+4x)=-5 | | 3(x-2)=(x-3) | | -(1x+7)-6(7-x)=36 | | 2x/9+1/3=-1/6 | | 5-2x+-4x+9=100 | | p-8/1=-2 | | 2r-4r+8+r=0 | | 3n-18=-2n+4n^2 | | x+6=X+6=3x-31 | | 3=h-7-9h+11 | | -12=-7x+2 | | 4+6q=9.5q | | 8x+30=6x-5 | | -3(6-4k)-5(2k-6)=2k+12 | | 2n/7=-4 | | 32/(x^2-8x)+7/x=4/(x-8) | | -8(v-9)=5v+7 | | 2x3=3x/4+7/12 | | 9+x=158 | | 3x(2)-x+2(4)=8 |