If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2b-90)+90+(b+45)+3/2b=540
We move all terms to the left:
(2b-90)+90+(b+45)+3/2b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
(2b-90)+(b+45)+3/2b-450=0
We get rid of parentheses
2b+b+3/2b-90+45-450=0
We multiply all the terms by the denominator
2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
6b^2-990b+3=0
a = 6; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·6·3
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-6\sqrt{27223}}{2*6}=\frac{990-6\sqrt{27223}}{12} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+6\sqrt{27223}}{2*6}=\frac{990+6\sqrt{27223}}{12} $
| 4x+x-2=13 | | x^2+3x+5/4=0 | | 5z+4-10z=-10-5z+14 | | -6m+5m=-6 | | 7x-15=-1;-2 | | 7a^2+20a+12=0 | | -8=-2/7w | | x-15=5x+13 | | 6^-x+6^1-x+6^2-x+6^3-x=259 | | 3-4x-15=-5+3(6+8x) | | 8-5n=-n+6(-5n-3) | | 28(2x+5)=7(2x+5)+4(2x+5) | | 7(z+2)=46+3z | | 10+x/4=1 | | 11x-84=-194 | | 6^x+6^1-x+6^2-x+6^3-x=259 | | 1n+3-2n=-3 | | 2x-11=91 | | 12(-2x-3)=-5(x+6)-6 | | X+12=3x-30 | | 4t+5+3t-6t=1+2 | | 7p+4p+13-7=7p+6+3p | | 2x/x^2-3=1 | | 1-2x=;x=5 | | 750+x(10)=15,00 | | 24=x+6/7 | | -32+4n=8(1+4n)-8 | | 2x+10=6x-35 | | 24=x+6/7. | | 9^x-1-2*3^x-27=0 | | -3x+37=x+17 | | 5x+2=2(2x+7) |