(2b-90)+90+b+3/2b+(b+45)=540

Simple and best practice solution for (2b-90)+90+b+3/2b+(b+45)=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2b-90)+90+b+3/2b+(b+45)=540 equation:



(2b-90)+90+b+3/2b+(b+45)=540
We move all terms to the left:
(2b-90)+90+b+3/2b+(b+45)-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(2b-90)+3/2b+(b+45)-450=0
We get rid of parentheses
b+2b+3/2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 5x-37=-2 | | a/7=3/10 | | 21=7x2 | | -32=4y-8 | | 9d×10=210 | | x/2+9=6 | | 2-1(3(x)-8)=1 | | X/x-4+5=4/x-4 | | y=27-4*6 | | -6/7p=-2 | | y=27-4*5 | | 1/2x+5/3=1/3x | | 5x-12=10x+53 | | -2/3(x+9)=-12 | | -4=2y-6(y-4) | | 3x+12/5+x+42/6=14 | | y=27-4*2 | | x=1.8x= | | x=1.8= | | 2(7+4v}+2=32+6v | | 63+25x=450+25x | | h+8=h-10 | | 1/2(x+3)=2 | | 8x-4(5-3x)=180 | | 1x-4x=25 | | 1+3z+z^2=0 | | 8x-4(5-3x)=80 | | 10n=52 | | -5(x+6)-x=-6-6x | | 52n=10 | | -23-9x=-13-37 | | 2/5(20q+45)=0 |

Equations solver categories