If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2f-5)(4f-9)=0
We multiply parentheses ..
(+8f^2-18f-20f+45)=0
We get rid of parentheses
8f^2-18f-20f+45=0
We add all the numbers together, and all the variables
8f^2-38f+45=0
a = 8; b = -38; c = +45;
Δ = b2-4ac
Δ = -382-4·8·45
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2}{2*8}=\frac{36}{16} =2+1/4 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2}{2*8}=\frac{40}{16} =2+1/2 $
| 2x+30+3x-10=180 | | 5x+32=57x-30 | | 6(x-1)-3=-3(x-3) | | 2(3x+4)=20+12x | | -3p+-7=8 | | 10x2+13x+14=0 | | -4/3w=-18 | | 2(4x-5)=9x+2 | | 9.6=u6 | | 4x-35=3X+5 | | 13=(1/3x)-5 | | 3x15=x+25 | | v+1.22=7.12 | | -7/2u=21 | | 4x+40+6x-10=180 | | -4/9u=-12 | | 2(4x+10)-2=60 | | z/9+3=-3 | | 6w+9=17+5w | | (4y+3)+12=180 | | 2=(3/(2x+6)+(4/(6x+18) | | y+4.79=7.37 | | 3x+17x-9=5(4x+4) | | (2x+39)+(3x+1)+(90)=180 | | 10y=12-8y=44 | | x-6.99=7.27 | | 0=(3/(2x+6)+(4/(6x+18) | | 16^7-2^24=x*2^24 | | y-4.34=1.7 | | 2x+10=140 | | 3x+17x-9=5(4x=4) | | 4-5=y |