(2g+9-5)-(6g-4+2);g=-2

Simple and best practice solution for (2g+9-5)-(6g-4+2);g=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2g+9-5)-(6g-4+2);g=-2 equation:



(2g+9-5)-(6g-4+2)g=-2
We move all terms to the left:
(2g+9-5)-(6g-4+2)g-(-2)=0
We add all the numbers together, and all the variables
(2g+4)-(6g-2)g-(-2)=0
We add all the numbers together, and all the variables
(2g+4)-(6g-2)g+2=0
We multiply parentheses
-6g^2+(2g+4)+2g+2=0
We get rid of parentheses
-6g^2+2g+2g+4+2=0
We add all the numbers together, and all the variables
-6g^2+4g+6=0
a = -6; b = 4; c = +6;
Δ = b2-4ac
Δ = 42-4·(-6)·6
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*-6}=\frac{-4-4\sqrt{10}}{-12} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*-6}=\frac{-4+4\sqrt{10}}{-12} $

See similar equations:

| 5(x-1)=9x+2-7(-2x-1) | | -6(-7x-9)=-138 | | 1/3(6x-12)=6 | | 38−5y=3 | | 80+r=160- | | 22=-1.1k=-20 | | x-3=4=7 | | 3(x-10)=2(4x+35) | | 6x+7+4(x+4)+4= | | 105=p-30 | | 3(x-10)=2(4x+35 | | 3(x-10)=2(4x | | 0.25n-6=8.6 | | 8-2g=8 | | m2+ 7=10 | | 2/5x+5=17 | | -5(3x-17)=2(x-7)-105 | | (3-3c)4=2c-30 | | 5x+40=8x+25 | | -2(-2w+5)-8w=5(w-1)-2 | | 49=7rr=3,6,7,9 | | 4x-38=-86 | | 12x+3-2x=33 | | 10a-20=10+5a | | x/5-3/5=x/7-9/7 | | 61+2x=6(-x+3)-21 | | 32=6(x+8)-8x | | 2k−1=11 | | X+13=5y | | 11x^2+12x+1=1 | | 2x+64=(5x-2) | | 6r+9=13r-6 |

Equations solver categories