If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2n)2=10n+48
We move all terms to the left:
(2n)2-(10n+48)=0
We add all the numbers together, and all the variables
2n^2-(10n+48)=0
We get rid of parentheses
2n^2-10n-48=0
a = 2; b = -10; c = -48;
Δ = b2-4ac
Δ = -102-4·2·(-48)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-22}{2*2}=\frac{-12}{4} =-3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+22}{2*2}=\frac{32}{4} =8 $
| 5s-1*100+-1*2s=200 | | 6a-4=25 | | (1/x+6)+(1/x+1)+(1/2x)=1/x | | (2n)2n=10n+48 | | 1/x+6+1/x+1+1/2x=1/x | | -3k^2-6k+1=4 | | 2x2+2x-10=0 | | 4x2+7x-9=0 | | 6x=2+38 | | 2x+2+120=180 | | 5x/2-5=7+x | | (x-5)/(x+6)=5/10 | | 9e+4=8e+14 | | (1/(x+6))+(1/(x+1))+(1/2x)=1/x | | 2(x-1)-4*2/3=1 | | 5/7x=8/10 | | -8q-4=-7q | | 4x-9=23/3 | | 15x+2x-7x-2=98 | | 6x+12=27.60 | | 14=4y-y^2 | | 2k^2=-5k | | 12y+6*3=12 | | 12y+6*3=y | | 55=5(6p-7) | | 4x+18=48−2x | | 40-2x=6x | | X2+12x=-37 | | F(x)=5/3x3+9 | | 2(3y+5=28 | | -5/3x^2+3x+11=-9+25/3x^2 | | x^2+x=6=0 |