If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (2n + 2)(6n + 1) = 9 Reorder the terms: (2 + 2n)(6n + 1) = 9 Reorder the terms: (2 + 2n)(1 + 6n) = 9 Multiply (2 + 2n) * (1 + 6n) (2(1 + 6n) + 2n * (1 + 6n)) = 9 ((1 * 2 + 6n * 2) + 2n * (1 + 6n)) = 9 ((2 + 12n) + 2n * (1 + 6n)) = 9 (2 + 12n + (1 * 2n + 6n * 2n)) = 9 (2 + 12n + (2n + 12n2)) = 9 Combine like terms: 12n + 2n = 14n (2 + 14n + 12n2) = 9 Solving 2 + 14n + 12n2 = 9 Solving for variable 'n'. Reorder the terms: 2 + -9 + 14n + 12n2 = 9 + -9 Combine like terms: 2 + -9 = -7 -7 + 14n + 12n2 = 9 + -9 Combine like terms: 9 + -9 = 0 -7 + 14n + 12n2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. -0.5833333333 + 1.166666667n + n2 = 0 Move the constant term to the right: Add '0.5833333333' to each side of the equation. -0.5833333333 + 1.166666667n + 0.5833333333 + n2 = 0 + 0.5833333333 Reorder the terms: -0.5833333333 + 0.5833333333 + 1.166666667n + n2 = 0 + 0.5833333333 Combine like terms: -0.5833333333 + 0.5833333333 = 0.0000000000 0.0000000000 + 1.166666667n + n2 = 0 + 0.5833333333 1.166666667n + n2 = 0 + 0.5833333333 Combine like terms: 0 + 0.5833333333 = 0.5833333333 1.166666667n + n2 = 0.5833333333 The n term is 1.166666667n. Take half its coefficient (0.5833333335). Square it (0.3402777780) and add it to both sides. Add '0.3402777780' to each side of the equation. 1.166666667n + 0.3402777780 + n2 = 0.5833333333 + 0.3402777780 Reorder the terms: 0.3402777780 + 1.166666667n + n2 = 0.5833333333 + 0.3402777780 Combine like terms: 0.5833333333 + 0.3402777780 = 0.9236111113 0.3402777780 + 1.166666667n + n2 = 0.9236111113 Factor a perfect square on the left side: (n + 0.5833333335)(n + 0.5833333335) = 0.9236111113 Calculate the square root of the right side: 0.961046883 Break this problem into two subproblems by setting (n + 0.5833333335) equal to 0.961046883 and -0.961046883.Subproblem 1
n + 0.5833333335 = 0.961046883 Simplifying n + 0.5833333335 = 0.961046883 Reorder the terms: 0.5833333335 + n = 0.961046883 Solving 0.5833333335 + n = 0.961046883 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-0.5833333335' to each side of the equation. 0.5833333335 + -0.5833333335 + n = 0.961046883 + -0.5833333335 Combine like terms: 0.5833333335 + -0.5833333335 = 0.0000000000 0.0000000000 + n = 0.961046883 + -0.5833333335 n = 0.961046883 + -0.5833333335 Combine like terms: 0.961046883 + -0.5833333335 = 0.3777135495 n = 0.3777135495 Simplifying n = 0.3777135495Subproblem 2
n + 0.5833333335 = -0.961046883 Simplifying n + 0.5833333335 = -0.961046883 Reorder the terms: 0.5833333335 + n = -0.961046883 Solving 0.5833333335 + n = -0.961046883 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-0.5833333335' to each side of the equation. 0.5833333335 + -0.5833333335 + n = -0.961046883 + -0.5833333335 Combine like terms: 0.5833333335 + -0.5833333335 = 0.0000000000 0.0000000000 + n = -0.961046883 + -0.5833333335 n = -0.961046883 + -0.5833333335 Combine like terms: -0.961046883 + -0.5833333335 = -1.5443802165 n = -1.5443802165 Simplifying n = -1.5443802165Solution
The solution to the problem is based on the solutions from the subproblems. n = {0.3777135495, -1.5443802165}
| 3m-7m+13=21 | | (3*4)-(1+2)=11 | | 2(1)+3=5 | | 8z+1=4 | | 10y-82=-y+72 | | 7+77x=33x+15 | | 5-7n+4n=33-73 | | 3(8x+4)x=6 | | 20y+5=10 | | 2f+3=f+6 | | 47-14=14 | | Q+2.7= | | t+4x-9=-6 | | 99x+78y=198 | | 41-2x=-37-9x | | -12x+(-8x)=140 | | (2x-27)=95 | | 2x-5+b=180 | | 14xy+3y=24 | | 2x-5+b=170 | | 4d-8=16 | | n+x-20=0 | | 22d^4-94d^3+24d^2= | | 210=61m | | x-5-18= | | 6y-78=126-11y | | lne^5x-2/x | | 8x-39/-13=11 | | -2(2x+7)-7(-8x-6)=76 | | log[1/4](3^3) | | X^2-16x-94=0 | | 4x-5-18= |