(2p+1)(3p+4)=225

Simple and best practice solution for (2p+1)(3p+4)=225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2p+1)(3p+4)=225 equation:



(2p+1)(3p+4)=225
We move all terms to the left:
(2p+1)(3p+4)-(225)=0
We multiply parentheses ..
(+6p^2+8p+3p+4)-225=0
We get rid of parentheses
6p^2+8p+3p+4-225=0
We add all the numbers together, and all the variables
6p^2+11p-221=0
a = 6; b = 11; c = -221;
Δ = b2-4ac
Δ = 112-4·6·(-221)
Δ = 5425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5425}=\sqrt{25*217}=\sqrt{25}*\sqrt{217}=5\sqrt{217}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-5\sqrt{217}}{2*6}=\frac{-11-5\sqrt{217}}{12} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+5\sqrt{217}}{2*6}=\frac{-11+5\sqrt{217}}{12} $

See similar equations:

| .15(2p+1.50)+1.50=11.50 | | k/3+-7=8 | | 72=3x+24 | | x^2-4x+9x-4=100 | | 2x/15-1/6=x/5 | | 2xx2x=0 | | -6-4(3n+4)=14 | | 7-y=167 | | 20=-4.9x^2+27x+2.4 | | 16x+20=21x+8x | | x+19=103 | | 2p+1=3p+4 | | 3(2-z)/2=z | | 28+n=15n | | 8x+3/8=9x+7/8 | | -3(2x-1)=0 | | 2y-4=22y= | | 3/7+1/2x=-9 | | 37+12x=-9 | | -3(2x1)=0 | | 2x–4=8 | | (4/y+5)-(6/y-5)=(4/y^2-25) | | 13=13n-4n | | x^{100}=1.01^{x} | | (2/n)=(1/9) | | 2x+8+8=-(4x) | | 40x=52 | | 6x+15=-44 | | -4=6x-50 | | 4x+24=1x | | b+3/6=2 | | 3(w-9)=2(w-9) |

Equations solver categories