If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2p+3)-(5p+7)/6p+11=-10/23
We move all terms to the left:
(2p+3)-(5p+7)/6p+11-(-10/23)=0
Domain of the equation: 6p!=0We get rid of parentheses
p!=0/6
p!=0
p∈R
2p-(5p+7)/6p+3+11+10/23=0
We calculate fractions
2p+(-115p-161)/138p+60p/138p+3+11=0
We add all the numbers together, and all the variables
2p+(-115p-161)/138p+60p/138p+14=0
We multiply all the terms by the denominator
2p*138p+(-115p-161)+60p+14*138p=0
We add all the numbers together, and all the variables
60p+2p*138p+(-115p-161)+14*138p=0
Wy multiply elements
276p^2+60p+(-115p-161)+1932p=0
We get rid of parentheses
276p^2+60p-115p+1932p-161=0
We add all the numbers together, and all the variables
276p^2+1877p-161=0
a = 276; b = 1877; c = -161;
Δ = b2-4ac
Δ = 18772-4·276·(-161)
Δ = 3700873
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1877)-\sqrt{3700873}}{2*276}=\frac{-1877-\sqrt{3700873}}{552} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1877)+\sqrt{3700873}}{2*276}=\frac{-1877+\sqrt{3700873}}{552} $
| 5q-22=-3q+26 | | –693=21h | | 2q+(5-3q)=-9 | | 3x+29=2x+40 | | 4x+15=-2x+75 | | 4/8=18/n | | x+1/x-1-x+4/x-2=1 | | -5x+5=x+59 | | 10x^2+24x-43=0 | | 2.5m+10=1.6m-6 | | .25t+5=13.5t+14 | | -20s=460 | | p+226=988 | | 4x-16=6x-4 | | (4c)3c=5c-10 | | f-104=170 | | 2q+(5-3q)=9 | | h+294=335 | | g+531=538 | | 3x+10/x+10=100 | | 19p=741 | | 3d+9=6d+3 | | 5q–22=–3q+26 | | 7r=686 | | 2x-7=-(3-x) | | y/y-7,5=12,5/10 | | r-84=4 | | 6=g/6 | | -10(s+)=-15 | | 3y+6×30=255 | | -10(s+4=-15 | | b+10=3(b-1)-3 |